Life Sciences, Information Sciences /
"Developed from presentations given at the Cerisy SVSI (Sciences de la vie, sciences de l'information) conference held in 2016, this book presents a broad overview of thought and research at the intersection of life sciences and information sciences. The contributors to this edited volume...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE Ltd ; John Wiley and Sons, Inc.,
2018.
|
Colección: | Information systems, web and pervasive computing series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; Cerisy Symposiums: Selection of Publications; Introduction; Part 1. From Gene to Species: Variability, Randomness and Stability; 1. The Emergence of Life: Some Notes on the Origin of Biological Information; 1.1. Acknowledgments; 1.2. Bibliography; 2. Fluctuating RNA; 2.1. The ribosome [YON 09]; 2.2. Ribosome dynamics [ZAC 16]; 2.3. Primitive RNA, ribozymes and viroids [MAU 14]; 2.4. The proto-ribosome [YON 09]; 2.5. Bibliography; 3. Artificial Darwinian Evolution of Nucleic Acids.
- 3.1. Refresher on Darwinâ#x80;#x99;s theory of evolution3.2. The molecular mechanisms of evolution; 3.3. Molecular evolution external to the being; 3.4. Imagery of molecular evolution; 3.5. Conclusion; 3.6. Acknowledgments; 3.7. Bibliography; 4. Information and Epigenetics; 4.1. Bibliography; 5. Molecular Forces and Motion in the Transmission of Information in Biology; 5.1. The dynamicsâ#x80;#x93;function hypothesis; 5.2. From thermodynamics to molecular forces; 5.3. Like the devil, biology is in the details; 5.4. The guitar in the river: theoretical MD; 5.5. Experimental MD.
- 5.6. Measuring average MD in whole cells5.7. Dynamics response to stress; 5.8. Conclusion: evolution â#x80;#x9C;is obligedâ#x80;#x9D; to select dynamics; 5.9. Bibliography; 6. Decline and Contingency, Bases of Biological Evolution; 6.1. Introduction; 6.2. Too many genes in the genomes; 6.3. Parasitism and symbiosis; 6.4. Asexual eukaryotes; 6.5. Yeasts; 6.6. Conclusion; 6.7. Bibliography; 7. Conservation, Co-evolution and Dynamics: From Sequence to Function; 7.1. Introduction; 7.2. Reverse engineering: from the protein described in a single dimension to its 3D properties.
- 7.3. Before any modeling, the geometric and physical properties, the behavior and history of proteins are characterized7.3.1. Proteins are dynamic objects; 7.3.2. Proteins have a history; 7.3.3. Some proteins share the same evolutionary history; 7.4. Chance and selection govern the generation of observed sequences; 7.5. Conservation and interaction sites of proteins; 7.6. Co-evolution: identification of contacts that can occur at different moments in the lifetime of a protein; 7.7. Co-evolution used to reconstruct proteinâ#x80;#x93;protein interaction networks in viruses.
- 7.8. Molecular modeling of several partners used to reconstruct proteinâ#x80;#x93;protein interaction networks for prokaryotic and eukaryotic organisms7.9. Dynamics and function; 7.10. Conclusions; 7.11. Acknowledgments; 7.12. Bibliography; 8. Localization of the Morphodynamic Information in Amniote Formation; 8.1. Introduction; 8.2. Schematic view of an amniote; 8.3. Mechanism of amniote formation; 8.4. Additional features; 8.5. Discussion and conclusion; 8.6. Bibliography; 9. From the Century of the Gene to that of the Organism: Introduction to New Theoretical Perspectives; 9.1. Introduction.