Cargando…

Ultimate Limit State Design of Steel-Plated Structures.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Paik, Jeom Kee
Otros Autores: Thayamballi, Anil Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2018.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Title Page; Copyright; Contents; Preface; About the Author; How to Use This Book; Chapter 1 Principles of Limit State Design; 1.1 Structural Design Philosophies; 1.1.1 Reliability-Based Design Format; 1.1.2 Partial Safety Factor-Based Design Format; 1.1.3 Failure Probability-Based Design Format; 1.1.4 Risk-Based Design Format; 1.2 Allowable Stress Design Versus Limit State Design; 1.2.1 Serviceability Limit State Design; 1.2.2 Ultimate Limit State Design; 1.2.3 Fatigue Limit State Design; 1.2.4 Accidental Limit State Design; 1.3 Mechanical Properties of Structural Materials.
  • 1.3.1 Characterization of Material Properties1.3.1.1 YoungÂś Modulus, E; 1.3.1.2 PoissonÂś Ratio, v; 1.3.1.3 Elastic Shear Modulus, G; 1.3.1.4 Proportional Limit, Ï#x83;P; 1.3.1.5 Yield Strength, Ï#x83;Y, and Yield Strain, Y; 1.3.1.6 Strain-Hardening Tangent Modulus, Eh, and Strain-Hardening Strain, h; 1.3.1.7 Ultimate Tensile Strength, Ï#x83;T; 1.3.1.8 Necking Tangent Modulus, En; 1.3.1.9 Fracture Strain, F, and Fracture Stress, Ï#x83;F; 1.3.2 Elasticâ#x80;#x93;Perfectly Plastic Material Model; 1.3.3 Characterization of the Engineering Stressâ#x80;#x93;Engineering Strain Relationship.
  • 1.3.4 Characterization of the True Stressâ#x80;#x93;True Strain Relationship1.3.5 Effect of Strain Rates; 1.3.6 Effect of Elevated Temperatures; 1.3.7 Effect of Cold Temperatures; 1.3.8 Yield Condition Under Multiple Stress Components; 1.3.9 The Bauschinger Effect: Cyclic Loading; 1.3.10 Limits of Cold Forming; 1.3.11 Lamellar Tearing; 1.4 Strength Member Types for Plated Structures; 1.5 Types of Loads; 1.6 Basic Types of Structural Failure; 1.7 Fabrication Related Initial Imperfections; 1.7.1 Mechanism of Initial Imperfections; 1.7.2 Initial Distortion Modeling; 1.7.2.1 Plate Initial Deflection.
  • 1.7.2.2 Column-Type Initial Deflection of a Stiffener1.7.2.3 Sideways Initial Distortion of a Stiffener; 1.7.3 Welding Residual Stress Modeling; 1.7.4 Modeling of Softening Phenomenon; 1.8 Age Related Structural Degradation; 1.8.1 Corrosion Damage; 1.8.2 Fatigue Cracks; 1.9 Accident Induced Damage; References; Chapter 2 Buckling and Ultimate Strength of Plateâ#x80;#x93;Stiffener Combinations; 2.1 Structural Idealizations of Plateâ#x80;#x93;Stiffener Assemblies; 2.2 Geometric Properties; 2.3 Material Properties; 2.4 Modeling of End Conditions; 2.5 Loads and Load Effects.
  • 2.6 Effective Width Versus Effective Breadth of Attached Plating2.6.1 Shear Lag-Induced Ineffectiveness: Effective Breadth of the Attached Plating; 2.6.2 Buckling-Induced Ineffectiveness: Effective Width of the Attached Plating; 2.6.3 Combined Shear Lag-Induced and Buckling-Induced Ineffectiveness; 2.7 Plastic Cross-Sectional Capacities; 2.7.1 Axial Capacity; 2.7.2 Shear Capacity; 2.7.3 Bending Capacity; 2.7.3.1 Rectangular Cross Section; 2.7.3.2 Plateâ#x80;#x93;Stiffener Combination Model Cross Section; 2.7.4 Capacity Under Combined Bending and Axial Load; 2.7.4.1 Rectangular Cross Section.
  • 2.7.4.2 Plateâ#x80;#x93;Stiffener Combination Model Cross Section.