Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries /
"This article is concerned with the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply n...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2018]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1200. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | "This article is concerned with the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply nice spectral properties as well as exponential decay properties for the associated semigroup. Admissible boundary conditions cover a wide range of applications for the usual scalar Kramer-Fokker- Planck equation or Bismut's hypoelliptic laplacian."--Page v |
---|---|
Notas: | "March 2018, volume 252, number 1200 (first of 6 numbers)." |
Descripción Física: | 1 online resource (v, 144 pages) |
Bibliografía: | Includes bibliographical references (pages 141-144). |
ISBN: | 9781470443696 1470443694 |
ISSN: | 0065-9266 ; |