Cargando…

Machine Learning with Swift : Artificial Intelligence for iOS.

Machine learning has become a hot topic for developers who want to impart intelligent functionality to their applications. In this book, we'll show you how to incorporate various machine learning libraries available for iOS developers. You'll quickly get acquainted with the machine learnin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sosnovshchenko, Oleksandr
Otros Autores: Baiev, Oleksandr
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1028181695
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180310s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDB  |d MERUC  |d VT2  |d OCLCQ  |d UKMGB  |d OCLCO  |d LVT  |d C6I  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB8B4629  |2 bnb 
016 7 |a 018815389  |2 Uk 
020 |a 9781787123526 
020 |a 1787123529 
020 |a 9781787121515 
020 |a 1787121518 
024 3 |a 9781787121515 
029 1 |a AU@  |b 000066231679 
029 1 |a UKMGB  |b 018815389 
029 1 |a AU@  |b 000067103043 
035 |a (OCoLC)1028181695 
037 |a B06193  |b 01201872 
050 4 |a Q336  |b .S676 2018eb 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Sosnovshchenko, Oleksandr. 
245 1 0 |a Machine Learning with Swift :  |b Artificial Intelligence for iOS. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (371 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Machine Learning; What is AI?; The motivation behind ML; What is ML?; Applications of ML; Digital signal processing (DSP); Computer vision; Natural language processing (NLP); Other applications of ML; Using ML to build smarter iOS applications; Getting to know your data; Features; Types of features; Choosing a good set of features; Getting the dataset; Data preprocessing; Choosing a model; Types of ML algorithms; Supervised learning; Unsupervised learning. 
505 8 |a Reinforcement learningMathematical optimization â#x80;#x93; how learning works; Mobile versus server-side ML; Understanding mobile platform limitations; Summary; Bibliography; Chapter 2: Classification â#x80;#x93; Decision Tree Learning; Machine learning toolbox; Prototyping the first machine learning app; Tools; Setting up a machine learning environment; IPython notebook crash course; Time to practice; Machine learning for extra-terrestrial life explorers; Loading the dataset; Exploratory data analysis; Data preprocessing; Converting categorical variables; Separating features from labels; One-hot encoding. 
505 8 |a Splitting the dataDecision trees everywhere; Training the decision tree classifier; Tree visualization; Making predictions; Evaluating accuracy; Tuning hyperparameters; Understanding model capacity trade-offs; How decision tree learning works; Building a tree automatically from data; Combinatorial entropy; Evaluating performance of the model with data; Precision, recall, and F1-score; K-fold cross-validation; Confusion matrix; Implementing first machine learning app in Swift; Introducing Core ML; Core ML features; Exporting the model for iOS; Ensemble learning random forest. 
505 8 |a Training the random forestRandom forest accuracy evaluation; Importing the Core ML model into an iOS project; Evaluating performance of the model on iOS; Calculating the confusion matrix; Decision tree learning pros and cons; Summary; Chapter 3: K-Nearest Neighbors Classifier; Calculating the distance; DTW; Implementing DTW in Swift; Using instance-based models for classification and clustering; People motion recognition using inertial sensors; Understanding the KNN algorithm; Implementing KNN in Swift; Recognizing human motion using KNN; Cold start problem; Balanced dataset. 
505 8 |a Choosing a good kReasoning in high-dimensional spaces; KNN pros; KNN cons; Improving our solution; Probabilistic interpretation; More data sources; Smarter time series chunking; Hardware acceleration; Trees to speed up the inference; Utilizing state transitions; Summary; Bibliography; Chapter 4: K-Means Clustering; Unsupervised learning; K-means clustering; Implementing k-means in Swift; Update step; Assignment step; Clustering objects on a map; Choosing the number of clusters; K-means clustering â#x80;#x93; problems; K-means++; Image segmentation using k-means; Summary. 
500 |a Chapter 5: Association Rule Learning. 
520 |a Machine learning has become a hot topic for developers who want to impart intelligent functionality to their applications. In this book, we'll show you how to incorporate various machine learning libraries available for iOS developers. You'll quickly get acquainted with the machine learning fundamentals and implement various algorithms with Swift. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a iOS (Electronic resource) 
630 0 7 |a iOS (Electronic resource)  |2 fast 
650 0 |a Swift (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Application software  |x Development. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Swift (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Macintosh OS.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Operating Systems  |x Macintosh.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Swift (Computer program language)  |2 fast 
700 1 |a Baiev, Oleksandr. 
758 |i has work:  |a Machine learning with Swift (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFDTBbVhqkbG3m4tpfC8K  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Sosnovshchenko, Oleksandr.  |t Machine Learning with Swift : Artificial Intelligence for iOS.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5314597  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036267798 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5314597 
994 |a 92  |b IZTAP