Cargando…

Concrete-filled Tubular Members and Connections /

"Using steel and concrete together utilizes the beneficial material properties of both elements. Concrete filled steel tubes represent a good example of a concrete steel composite structure, and are particularly useful as columns in high rise buildings and bridge piers. They can be used in a ra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhao, Xiao-Ling (Autor), Han, Lin-Hai (Autor), Lu, Hui (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, 2014.
Edición:First edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Half Title; Title Page; Copyright Page; Contents; Preface; Notation; Chapter 1: Introduction; 1.1 Applications of Concrete-Filled Steel Tubes; 1.2 Advantages of Concrete-Filled Steel Tubes; 1.3 Current Knowledge on CFST Structures; 1.3.1 Related Publications; 1.3.2 International Standards; 1.4 Layout of the Book; 1.5 References; Chapter 2: Material Properties and Limit States Design; 2.1 Material Properties; 2.1.1 Steel Tubes; 2.1.2 Concrete; 2.2 Limit States Design; 2.2.1 Ultimate Strength Limit State; 2.2.2 Service ability Limit State; 2.3 References
  • Chapter 3: CFST Members Subjected to Bending3.1 Introduction; 3.2 Local Buckling and Section Capacity; 3.2.1 Local Buckling and Classification of Cross-Sections; 3.2.2 Stress Distribution; 3.2.3 Derivation of Plastic Moment Capacity; 3.2.4 Design Rules for Strength; 3.2.5 Comparison of Specifications; 3.2.6 Examples; 3.3 MemberCapacity; 3.3.1 Flexural-Torsional Buckling; 3.3.2 Effect of Concrete-Fillingon Flexural-Torsional Buckling Capacity; 3.4 References; Chapter 4: CFST Members Subjected to Compression; 4.1 General; 4.2 Section Capacity; 4.2.1 Local Buckling in Compression
  • 4.2.2 Confinement of Concrete4.2.3 Design Section Capacity; 4.2.4 Examples; 4.3 Member Capacity; 4.3.1 Interaction of Local and Over all Buckling; 4.3.2 Column Curves; 4.3.3 Design Member Capacity; 4.3.4 Examples; 4.4 References; Chapter 5: CFST Members Subjected to Combined Actions; 5.1 General; 5.2 Stress Distribution in CFST Members Subjected to Combined Bending and Compression; 5.3 Design Rules; 5.3.1 BS5400-5: 2005; 5.3.2 DBJ13-51; 5.3.3 Eurocode 4; 5.3.4 Comparison of Codes; 5.4 Examples; 5.4.1 Example 1 CFST SHS; 5.4.2 Example 2 CFST CHS; 5.5 Combined Loads Involving Torsionor Shear
  • 5.5.1 Compression and Torsion5.5.2 Bending and Torsion; 5.5.3 Compression, Bending and Torsion; 5.5.4 Compression, Bending and Shear; 5.5.5 Compression, Bending, Torsion and Shear; 5.6 References; Chapter 6: Seismic Performance of CFST Members; 6.1 General; 6.2 Influence of Cyclic Loading on Strength; 6.2.1 CFST Beams; 6.2.2 CFST Braces; 6.2.3 CFST Beam-Columns; 6.3 Ductility; 6.3.1 DuctilityRatio ; 6.3.2 Parameters Affecting the Ductility Ratio ; 6.3.3 Some Measures to Ensure Sufficient Ductility; 6.4 Parameters Affecting Hysteretic Behaviour
  • 6.4.1 Moment (M) versus Curvature (I) Responses6.4.2 Lateral Load (P) versus Lateral Deflection Responses; 6.5 Simplified Hysteretic Models; 6.5.1 Simplified Model of the Moment-Curvature Hysteretic Relationship; 6.5.2 Simplified Model of the Load-Deflection Hysteretic Relationship; 6.5.3 Simplified Model of the Ductility Ratio ; 6.6 References; Chapter 7: Fire Resistance of CFST Members; 7.1 General; 7.2 Parameters Affecting Fire Resistance; 7.3 Fire Resistance Design; 7.3.1 Chinese Code DBJ13-51; 7.3.2 CIDECT Design Guide No. 4; 7.3.3 Eurocode 4 Part1.2; 7.3.4 North American Approach