|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1024280888 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
180224s2018 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d IDB
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470442064
|
020 |
|
|
|a 147044206X
|
029 |
1 |
|
|a AU@
|b 000069466205
|
035 |
|
|
|a (OCoLC)1024280888
|
050 |
|
4 |
|a QA612.2
|b .W437 2017eb
|
082 |
0 |
4 |
|a 514.2242
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Webster, Ben.
|
245 |
1 |
0 |
|a Knot Invariants and Higher Representation Theory.
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2018.
|
300 |
|
|
|a 1 online resource (154 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v v. 250
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1. Quantum topology; 2. Categorification of tensor products; 3. Topology; 4. Summary; Notation; Acknowledgments; Chapter 2. Categorification of quantum groups; 1. Khovanov-Lauda diagrams; 2. The 2-category; 3. A spanning set; 4. Bubble slides; Chapter 3. Cyclotomic quotients; 1. A first approach to the categorification of simples; 2. Categorifications for minimal parabolics; 2.1. The parabolic categorification; 2.2. The quiver flag category; 2.3. The action; 3. Cyclotomic quotients; 4. The categorical action on cyclotomic quotients.
|
505 |
8 |
|
|a 5. Universal categorificationsChapter 4. The tensor product algebras; 1. Stendhal diagrams; 2. Definition and basic properties; 3. A basis and spanning set; 4. Splitting red strands; 5. The double tensor product algebras; 6. A Morita equivalence; 7. Decategorification; Chapter 5. Standard modules; 1. Standard modules defined; 2. Simple modules and crystals; 3. Stringy triples; 4. Standard stratification; 5. Self-dual projectives; Chapter 6. Braiding functors; 1. Braiding; 2. Serre functors; Chapter 7. Rigidity structures; 1. Coevaluation and evaluation for a pair of representations.
|
505 |
8 |
|
|a 2. Ribbon structure3. Coevaluation and quantum trace in general; Chapter 8. Knot invariants; 1. Constructing knot and tangle invariants; 2. The unknot for \fg= â#x82;#x82;; 3. Independence of projection; 4. Functoriality; Chapter 9. Comparison to category and other knot homologies; 1. Cyclotomic degenerate Hecke algebras; 2. Comparison of categories; 3. The affine case; 4. Comparison to other knot homologies; Bibliography; Back Cover.
|
520 |
|
|
|a The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \mathfrak{sl}_2 and \mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presen.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Knot theory.
|
650 |
|
6 |
|a Théorie des nœuds.
|
650 |
|
7 |
|a Knot theory
|2 fast
|
758 |
|
|
|i has work:
|a Knot invariants and higher representation theory (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG3tG3DjTHFdQcPj8DjJwC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Webster, Ben.
|t Knot Invariants and Higher Representation Theory.
|d Providence : American Mathematical Society, ©2018
|z 9781470426507
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5291691
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5291691
|
994 |
|
|
|a 92
|b IZTAP
|