Cargando…

The second-order adjoint sensitivity analysis methodology /

"The author has achieved the breakthrough of generalizing the First-Order Theory presented in his previous books, to the efficient computations of arbitrarily high-order sensitivities for nonlinear systems (HONASAP). This breakthrough has many applications, especially when there is a need to qu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cacuci, Dan Gabriel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, 2018.
Colección:Advances in applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1023861740
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 180222t20182018flu ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d YDX  |d UMC  |d OSU  |d MERER  |d OCLCQ  |d EZ9  |d CRCPR  |d U3W  |d UIU  |d INT  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LOA  |d MERUC  |d OCLCQ  |d OTZ  |d OCLCQ  |d K6U  |d VLY  |d OCLCF  |d UKAHL  |d ELBRO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 1000413058  |a 1003888420  |a 1015208812  |a 1026728907  |a 1027151771  |a 1027318631  |a 1027611182  |a 1066623278  |a 1162115204 
020 |a 9781315120270  |q (electronic bk.) 
020 |a 1315120275  |q (electronic bk.) 
020 |z 9781498726481  |q (hardcover) 
020 |z 1498726488  |q (hardcover) 
020 |z 9781138105294 
020 |a 9781498726498 
020 |a 1498726496 
020 |a 1351646583 
020 |a 9781351646581 
029 1 |a CHVBK  |b 567530213 
029 1 |a CHBIS  |b 011433281 
029 1 |a AU@  |b 000069079294 
035 |a (OCoLC)1023861740  |z (OCoLC)1000413058  |z (OCoLC)1003888420  |z (OCoLC)1015208812  |z (OCoLC)1026728907  |z (OCoLC)1027151771  |z (OCoLC)1027318631  |z (OCoLC)1027611182  |z (OCoLC)1066623278  |z (OCoLC)1162115204 
050 4 |a QA402  |b .C2987 2018eb 
072 7 |a SCI  |x 064000  |2 bisacsh 
072 7 |a TEC  |x 029000  |2 bisacsh 
082 0 4 |a 003/.71  |2 23 
049 |a UAMI 
100 1 |a Cacuci, Dan Gabriel,  |e author. 
245 1 4 |a The second-order adjoint sensitivity analysis methodology /  |c Dan Gabriel Cacuci. 
264 1 |a Boca Raton :  |b CRC Press,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (xx, 305 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in applied mathematics 
520 2 |a "The author has achieved the breakthrough of generalizing the First-Order Theory presented in his previous books, to the efficient computations of arbitrarily high-order sensitivities for nonlinear systems (HONASAP). This breakthrough has many applications, especially when there is a need to quantify nonlinear behavior or to quantify uncertainties in design parameter/system responses in large-scale systems. This book presents the theory of the HONASAP with applications, from simple, analytically solvable, paradigm problems to large-scale applications in thermal hydraulics, particle transport, etc."--Provided by publisher 
504 |a Includes bibliographical references and index. 
505 0 |a Motivation for computing first- and second-order sensitivities of system responses to the system -- Illustrative application of the 2nd-ASAM to a linear evolution problem -- The 2nd-ASAM for linear systems -- Application of the 2nd-ASAM to a linear heat conduction and convection benchmark problem -- Application of the 2nd-ASAM to a linear particle diffusion problem -- Application of the 2nd-ASAM for computing sensitivities of detector responses to uncollided radiation transport -- The 2nd-ASAM for nonlinear systems -- Application of the 2nd-ASAM to a nonlinear heat conduction problem. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Sensitivity theory (Mathematics) 
650 0 |a Large scale systems. 
650 0 |a Nonlinear systems. 
650 0 4 |a Applied Mathematics. 
650 0 4 |a Mathematics & Statistics for Engineers. 
650 0 4 |a Mathematical Physics. 
650 6 |a Théorie de la sensibilité (Mathématiques) 
650 6 |a Systèmes de grandes dimensions. 
650 6 |a Systèmes non linéaires. 
650 7 |a SCIENCE  |x System Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Operations Research.  |2 bisacsh 
650 7 |a Large scale systems  |2 fast 
650 7 |a Nonlinear systems  |2 fast 
650 7 |a Sensitivity theory (Mathematics)  |2 fast 
758 |i has work:  |a The second-order adjoint sensitivity analysis methodology (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGPYHKdyBPgBVD8twP6xWC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Cacuci, Dan Gabriel.  |t Second-order adjoint sensitivity analysis methodology.  |d Boca Raton : CRC Press, 2018  |z 9781498726481  |w (DLC) 2017040197  |w (OCoLC)1010700690 
830 0 |a Advances in applied mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5301938  |z Texto completo 
880 0 0 |6 505-00/(S  |t --  |g 8.3.2.  |t Computation of the Second-Order Sensitivities R(2)2i(α0) Δ [∂]2T(zr)/([∂]q [∂]αi) --  |g 8.3.3.  |t Computation of the Second-Order Sensitivities R(2)3i(alpha;0) Δ [∂]2T(zr)/([∂]Ta [∂]αi) --  |g 8.3.4.  |t Computation of the Second-Order Sensitivities R(2)4i(alpha;0) Δ [∂]2T(zr)/([∂]k0 [∂]αi) --  |g 8.3.5.  |t Computation of the Second-Order Sensitivities R(2)5i(α0) Δ [∂]2T(zr)/([∂]c [∂]αi) --  |g 8.3.6.  |t Computation of Standard Deviation and Skewness of the Temperature Distribution --  |g 8.4.  |t Concluding Remarks. 
880 0 0 |6 505-00/(S  |g Machine generated contents note:  |g 1.  |t Motivation for Computing First- and Second-Order Sensitivities of System Responses to the System's Parameters --  |g 1.1.  |t Fundamental Role of Response Sensitivities for Uncertainty Quantification --  |g 1.2.  |t Fundamental Role of Response Sensitivities for Predictive Modeling --  |g 1.3.  |t Advantages and Disadvantages of Statistical and Deterministic Methods for Computing Response Sensitivities --  |g 2.  |t Illustrative Application of the 2nd-ASAM to a Linear Evolution Problem --  |g 2.1.  |t Exact Computation of the First-Order Response Sensitivities --  |g 2.2.  |t Exact Computation of the Second-Order Response Sensitivities --  |g 2.2.1.  |t Computing the Second-Order Response Sensitivities Corresponding to the First-Order Sensitivities [∂]ρ(t1)/[∂]βi --  |g 2.2.2.  |t Computing the Second-Order Response Sensitivities Corresponding to the First-Order Sensitivities [∂]ρ(t1)/[∂]wi --  |g 2.2.3.  |t Computing the Second-Order Response Sensitivities Corresponding to the First-Order Sensitivities [∂]ρ(t1)/[∂]q --  |g 2.2.4.  |t Computing the Second-Order Response Sensitivities Corresponding to the First-Order Sensitivities [∂]ρ(t1)/[∂]ρin --  |g 2.2.5.  |t Discussion of the Essential Features of the 2nd-ASAM --  |g 2.2.6.  |t Illustrative Use of Response Sensitivities for Predictive Modeling --  |g 3.  |t 2nd-ASAM for Linear Systems --  |g 3.1.  |t Mathematical Modeling of a General Linear System --  |g 3.2.  |t 1st-LASS for Computing Exactly and Efficiently First-Order Sensitivities of Scalar-Valued Responses for Linear Systems --  |g 3.3.  |t 2nd-LASS for Computing Exactly and Efficiently First-Order Sensitivities of Scalar-Valued Responses for Linear Systems --  |g 3.4.  |t Concluding Remarks --  |g 4.  |t Application of the 2nd-ASAM to a Linear Heat Conduction and Convection Benchmark Problem --  |g 4.1.  |t Heat Transport Benchmark Problem: Mathematical Modeling --  |g 4.2.  |t Computation of First-Order Sensitivities --  |g 4.2.1.  |t Computation of First-Order Sensitivities of the Heated Rod Temperature, T(r, z), at an Arbitrary Location (r0, z0) --  |g 4.2.2.  |t Computation of First-Order Sensitivities of the Heated Rod Temperature, Tmax(zmax), at the Location zmax --  |g 4.2.3.  |t Computation of First-Order Sensitivities of the Heated Rod Temperature, Ts(z1), at an Arbitrary Location z1 --  |g 4.2.4.  |t Computation of First-Order Sensitivities of the Coolant Temperature --  |g 4.2.5.  |t Verification of the ANSYS/FLUENT Adjoint Solver --  |g 4.3.  |t Applying the 2nd-ASAM to Compute the Second-Order Sensitivities and Uncertainties for the Heat Transport Benchmark Problem --  |g 4.3.1.  |t Computation of the Second-Order Sensitivities and Uncertainties of the Heated Rod Temperature, T(r, z), at an Arbitrary Location (r0, z0) --  |g 4.3.1.1.  |t Computation of the Second-Order Response Sensitivities [∂]2T(r0, z0)/([∂]α1 [∂]αj), α1 [≡] q, and j = 1 ..., Nα = 6 --  |g 4.3.1.2.  |t Computation of the Second-Order Response Sensitivities 9[∂]2T(r0, z0)/([∂]α2 [∂]αj), α2 [≡] k, and j = 1 ..., Nα = 6 --  |g 4.3.1.3.  |t Computation of the Second-Order Response Sensitivities [∂]2T(r0, z0)/([∂]α3 [∂]αj), α3 [≡] h, and j = 1 ..., Nα = 6 --  |g 4.3.1.4.  |t Computation of the Second-Order Response Sensitivities [∂]2T(r0, z0)/([∂]α4 [∂]αj), α4 [≡] W, and j = 1 ..., Nα = 6 --  |g 4.3.1.5.  |t Computation of Second-Order Response Sensitivities [∂]2T(r0, z0)/([∂]α5 [∂]αj), α5 [≡] cp, and j = 1 ..., Nα = 6 --  |g 4.3.1.6.  |t Computation of Second-Order Response Sensitivities [∂]2T(r0, z0)/([∂]α6 [∂]αj), α6 [≡] Tinlet, and j = 1 ..., Nα = 6 --  |g 4.3.1.7.  |t Quantitative Comparison of Second-Order Sensitivities of the Rod Temperature Distribution to G4M Reactor Model Parameters --  |g 4.3.1.8.  |t Quantitative Contributions of Second-Order Sensitivities to the Uncertainty in the Rod Temperature Distribution for G4M Reactor Model Parameters --  |g 4.3.2.  |t Computation of Second-Order Sensitivities of the Coolant Temperature, Tfi(z) --  |g 4.4.  |t Concluding Remarks --  |g 5.  |t Application of the 2nd-ASAM to a Linear Particle Diffusion Problem --  |g 5.1.  |t Problem Description --  |g 5.2.  |t Applying the 2nd-ASAM to Compute the First-Order Response Sensitivities to Model Parameters --  |g 5.3.  |t Applying the 2nd-ASAM to Compute the Second-Order Response Sensitivities to Model Parameters --  |g 5.3.1.  |t Applying the 2nd-ASAM to Compute the Second-Order Response Sensitivities S4i Δ [∂]2R/([∂]Σd[∂]αi) --  |g 5.3.2.  |t Applying the 2nd-ASAM to Compute the Second-Order Response Sensitivities S3i Δ [∂]2R/([∂]Q[∂]αi) --  |g 5.3.3.  |t Applying the 2nd-ASAM to Compute the Second-Order Response Sensitivities S1i Δ [∂]2R/([∂]Σa[∂]αi) --  |g 5.3.4.  |t Applying the 2nd-ASAM to Compute the Second-Order Response Sensitivities S2i Δ [∂]2R/([∂]D[∂]αi) --  |g 5.4.  |t Role of Second-Order Response Sensitivities for Quantifying Non-Gaussian Features of the Response Uncertainty Distribution --  |g 5.5.  |t Illustrative Application of First-Order Response Sensitivities for Predictive Modeling --  |g 5.5.1.  |t Assimilating an Imprecise but Consistent Measurement --  |g 5.5.2.  |t Assimilating a Precise and Consistent Measurement --  |g 5.5.3.  |t Assimilating Two Consistent Measurements --  |g 5.5.4.  |t Assimilating Four Consistent Measurements --  |g 6.  |t Application of the 2nd-ASAM for Computing Sensitivities of Detector Responses to Uncollided Radiation Transport --  |g 6.1.  |t Ray-Tracing Form of the Forward and Adjoint Boltzmann Transport Equations --  |g 6.2.  |t Application of the 2nd-ASAM to Compute the First-Order Response Sensitivities to Variations in Model Parameters --  |g 6.3.  |t Application of the 2nd-ASAM to Compute the Second-Order Response Sensitivities to Variations in Model Parameters --  |g 6.3.1.  |t Computation of the Second-Order Sensitivities S(2)i, j Δ [∂]S(1)i[∂]Ni [∂]αj, i = 1 ..., Nm, j = 1 ..., Nα --  |g 6.3.2.  |t Computation of the Second-Order Sensitivities S(2)i+3Nm, j Δ [∂]S(1)i[∂]μi [∂]αj, i = 1 ..., Nm, j = 1 ..., Nα --  |g 6.3.3.  |t Computation of the Second-Order Sensitivities S(2)i+2Nm, j Δ [∂]S(1)[∂]σi [∂]αj, i = 1 ..., Nm, j = 1 ..., Nα --  |g 6.3.4.  |t Computation of the Second-Order Sensitivities S(2)i+2Nm, j Δ [∂]S(1)[∂]qi [∂]αj, i = 1 ..., Nd, j = 1 ..., Nα --  |g 6.4.  |t Concluding Remarks --  |g 7.  |t 2nd-ASAM for Nonlinear Systems --  |g 7.1.  |t Mathematical Modeling of a General Nonlinear System --  |g 7.2.  |t 1st-LASS for Computing Exactly and Efficiently the First-Order Sensitivities --  |g 7.3.  |t 2nd-LASS for Computing Exactly and Efficiently the Second-Order Sensitivities of Scalar-Valued Responses for Nonlinear Systems --  |g 7.4.  |t Concluding Remarks --  |g 8.  |t Application of the 2nd-ASAM to a Nonlinear Heat Conduction Problem --  |g 8.1.  |t Mathematical Modeling of Heated Cylindrical Test Section --  |g 8.2.  |t Application of the 2nd-ASAM for Computing the First-Order Sensitivities --  |g 8.3.  |t Application of the 2nd-ASAM to Compute the Second-Order Sensitivities --  |g 8.3.1.  |t Computation of the Second-Order Sensitivities R(2)1i Δ [∂]2T(zr)/([∂]Q[∂]αi). 
938 |a eLibro  |b ELBO  |n ELB141883 
938 |a YBP Library Services  |b YANK  |n 15186898 
938 |a YBP Library Services  |b YANK  |n 12813644 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5301938 
938 |a EBSCOhost  |b EBSC  |n 1714558 
938 |a CRC Press  |b CRCP  |n 9781315120270 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036266532 
994 |a 92  |b IZTAP