|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1022257869 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
180118t20182017riua ob 000 0 eng d |
040 |
|
|
|a UAB
|b eng
|e rda
|e pn
|c UAB
|d OCLCO
|d OCLCF
|d UIU
|d GZM
|d YDX
|d COD
|d CUY
|d COO
|d EBLCP
|d QCL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCA
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCL
|
020 |
|
|
|a 9781470442620
|q (online)
|
020 |
|
|
|a 1470442620
|q (online)
|
020 |
|
|
|z 9781470426859
|q (alk. paper)
|
020 |
|
|
|z 1470426854
|
029 |
1 |
|
|a AU@
|b 000065652572
|
035 |
|
|
|a (OCoLC)1022257869
|
050 |
|
4 |
|a QA331
|b .M379 2018
|
082 |
0 |
4 |
|a 512.7/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mason, A. M.
|q (Amy Marie),
|d 1985-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjK6PpMkHhTw7bpxQYb6Dm
|
245 |
1 |
0 |
|a Orthogonal and symplectic n-level densities /
|c A.M. Mason, N.C. Snaith.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [2018]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (v, 93 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 251, number 1194
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "January 2018, volume 251, number 1194 (first of 6 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 89-93).
|
520 |
3 |
|
|a "In this paper we apply to the zeros of families of L-functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the n-correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or L-functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of L-functions have an underlying symmetry relating to one of the classical compact groups U(N), O(N) and USp(2N). Here we complete the work already done with U(N) (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the n-level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the n-level densities of zeros of L-functions with orthogonal or symplectic symmetry, including all the lower order terms. We show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic n-level density results."--Page v.
|
505 |
0 |
0 |
|t Chapter 1. Introduction
|t Chapter 2. Eigenvalue Statistics of Orthogonal Matrices
|t Chapter 3. Eigenvalue Statistics of Symplectic Matrices
|t Chapter 4. $L$-functions
|t Chapter 5. Zero Statistics of Elliptic Curve $L$-functions
|t Chapter 6. Zero Statistics of Quadratic Dirichlet $L$-functions
|t Chapter 7. $n$-level Densities with Restricted Support
|t Chapter 8. Example Calculations.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a L-functions.
|
650 |
|
0 |
|a Orthogonalization methods.
|
650 |
|
0 |
|a Symplectic and contact topology.
|
650 |
|
0 |
|a Number theory.
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
6 |
|a Fonctions L.
|
650 |
|
6 |
|a Méthodes d'orthogonalisation.
|
650 |
|
6 |
|a Topologie symplectique et de contact.
|
650 |
|
6 |
|a Théorie des nombres.
|
650 |
|
6 |
|a Analyse numérique.
|
650 |
|
7 |
|a Análisis numérico
|2 embne
|
650 |
0 |
7 |
|a Toería de números
|2 embucm
|
650 |
|
7 |
|a L-functions
|2 fast
|
650 |
|
7 |
|a Number theory
|2 fast
|
650 |
|
7 |
|a Numerical analysis
|2 fast
|
650 |
|
7 |
|a Orthogonalization methods
|2 fast
|
650 |
|
7 |
|a Symplectic and contact topology
|2 fast
|
700 |
1 |
|
|a Snaith, N. C.
|q (Nina C.),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJqBvkPvj7yByBJvpwVQv3
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Orthogonal and symplectic n-level densities (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFpQyFFKKJxBhFkPrCdwBX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version record:
|a Mason, A.M. (Amy Marie), 1985-
|t Orthogonal and symplectic n-level densities.
|d Providence, RI : American Mathematical Society, [2018]
|z 9781470426859
|w (DLC) 2017054241
|w (OCoLC)1020303816
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1194.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5346259
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5346259
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15214457
|
994 |
|
|
|a 92
|b IZTAP
|