Cargando…

Orthogonal and symplectic n-level densities /

"In this paper we apply to the zeros of families of L-functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the n-correlation of the zeros of the Riemann zeta function. This method uses the Rati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mason, A. M. (Amy Marie), 1985- (Autor), Snaith, N. C. (Nina C.) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1194.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1022257869
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180118t20182017riua ob 000 0 eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d OCLCO  |d OCLCF  |d UIU  |d GZM  |d YDX  |d COD  |d CUY  |d COO  |d EBLCP  |d QCL  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCA  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
020 |a 9781470442620  |q (online) 
020 |a 1470442620  |q (online) 
020 |z 9781470426859  |q (alk. paper) 
020 |z 1470426854 
029 1 |a AU@  |b 000065652572 
035 |a (OCoLC)1022257869 
050 4 |a QA331  |b .M379 2018 
082 0 4 |a 512.7/3  |2 23 
049 |a UAMI 
100 1 |a Mason, A. M.  |q (Amy Marie),  |d 1985-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjK6PpMkHhTw7bpxQYb6Dm 
245 1 0 |a Orthogonal and symplectic n-level densities /  |c A.M. Mason, N.C. Snaith. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2017 
300 |a 1 online resource (v, 93 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 251, number 1194 
588 0 |a Print version record. 
500 |a "January 2018, volume 251, number 1194 (first of 6 numbers)." 
504 |a Includes bibliographical references (pages 89-93). 
520 3 |a "In this paper we apply to the zeros of families of L-functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the n-correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or L-functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of L-functions have an underlying symmetry relating to one of the classical compact groups U(N), O(N) and USp(2N). Here we complete the work already done with U(N) (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the n-level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the n-level densities of zeros of L-functions with orthogonal or symplectic symmetry, including all the lower order terms. We show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic n-level density results."--Page v. 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Eigenvalue Statistics of Orthogonal Matrices  |t Chapter 3. Eigenvalue Statistics of Symplectic Matrices  |t Chapter 4. $L$-functions  |t Chapter 5. Zero Statistics of Elliptic Curve $L$-functions  |t Chapter 6. Zero Statistics of Quadratic Dirichlet $L$-functions  |t Chapter 7. $n$-level Densities with Restricted Support  |t Chapter 8. Example Calculations. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a L-functions. 
650 0 |a Orthogonalization methods. 
650 0 |a Symplectic and contact topology. 
650 0 |a Number theory. 
650 0 |a Numerical analysis. 
650 6 |a Fonctions L. 
650 6 |a Méthodes d'orthogonalisation. 
650 6 |a Topologie symplectique et de contact. 
650 6 |a Théorie des nombres. 
650 6 |a Analyse numérique. 
650 7 |a Análisis numérico  |2 embne 
650 0 7 |a Toería de números  |2 embucm 
650 7 |a L-functions  |2 fast 
650 7 |a Number theory  |2 fast 
650 7 |a Numerical analysis  |2 fast 
650 7 |a Orthogonalization methods  |2 fast 
650 7 |a Symplectic and contact topology  |2 fast 
700 1 |a Snaith, N. C.  |q (Nina C.),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJqBvkPvj7yByBJvpwVQv3 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Orthogonal and symplectic n-level densities (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFpQyFFKKJxBhFkPrCdwBX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version record:  |a Mason, A.M. (Amy Marie), 1985-  |t Orthogonal and symplectic n-level densities.  |d Providence, RI : American Mathematical Society, [2018]  |z 9781470426859  |w (DLC) 2017054241  |w (OCoLC)1020303816 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1194. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5346259  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5346259 
938 |a YBP Library Services  |b YANK  |n 15214457 
994 |a 92  |b IZTAP