Cargando…

Self Sensing Techniques for Piezoelectric Vibration Applications.

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grasso, Emanuele
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Logos Verlag Berlin, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1021808219
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180203s2014 gw o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d EZ9  |d OCLCQ  |d LOA  |d OCLCO  |d UX1  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9783832599294 
020 |a 3832599290 
020 |z 9783832536237 
029 1 |a AU@  |b 000065431170 
035 |a (OCoLC)1021808219 
050 4 |a TK7872.P54  |b .G737 2014 
082 0 4 |a 681.2  |2 23 
049 |a UAMI 
100 1 |a Grasso, Emanuele. 
245 1 0 |a Self Sensing Techniques for Piezoelectric Vibration Applications. 
260 |a Berlin :  |b Logos Verlag Berlin,  |c 2014. 
300 |a 1 online resource (198 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; 1 Introduction; 1.1 State of the art; 1.2 Aim of this work; 2 Piezoelectricity and vibrating structures; 2.1 Piezoelectricity; 2.1.1 Piezoelectric effect; 2.1.2 Constitutive equations for piezoelectric materials; 2.1.3 Piezoelectric nonlinearities; 2.1.4 Piezoelectric transducers and actuators; 2.2 Vibrating structures; 2.2.1 Modal analysis; 2.2.2 Modal analysis of a thin cantilevered beam; 2.2.3 Modal analysis of a thin plate; 2.3 Piezoelectric Vibrating Structures (PVS); 2.3.1 Piezoelectric static actuation in a PVS; 2.3.2 Dynamic model of a PVS â#x80;#x93; Rayleigh-Ritz formulation. 
505 8 |a 2.3.3 Transfer functions for a PVS3 Self sensing techniques for piezoelectric materials; 3.1 Strain and stress reconstruction; 3.1.1 One step reconstruction; 3.1.2 Two steps reconstruction; 3.2 Dimensioning of self sensing piezoelectric plates; 3.3 Bridge-circuit based reconstruction; 3.3.1 Limits of a typical bridge based self sensing technique; 3.3.2 Adaptive algorithms for self sensing techniques; 3.3.3 Limits of the linear piezoelectric capacitance model; 3.4 Hysteretic dynamic model of a PVS; 3.4.1 Transfer functions for a PVS with self sensing actuators. 
505 8 |a 3.5 Hysteretic model based reconstruction3.6 Self sensing techniques implementation; 3.6.1 Self sensing analogic implementation; 3.6.2 Self sensing digital implementation; 3.6.3 Self sensing digital and hybrid implementations with adaptive identification; 4 Electronics for self sensing applications; 4.1 Variable capacitance multiplier; 4.2 Sawyer Tower circuit; 4.3 Active Sawyer Tower circuit; 4.3.1 Active Sawyer Tower for power demanding applications; 4.4 Active Sawyer Tower with temperature measurement; 5 Experimental verification and results; 5.1 Piezoelectric cantilevered beam. 
505 8 |a 5.1.1 Experimental set up description5.1.2 Structural frequency response; 5.1.3 Self sensing linear reconstruction; 5.1.4 Self sensing hysteretic reconstruction; 5.1.5 Open loop response comparison; 5.1.6 Vibration control with self sensing reconstruction; 5.2 Partially clamped piezoelectric plate; 5.2.1 Experimental set up description; 5.2.2 Structural frequency response; 5.2.3 Self sensing linear reconstruction; 5.2.4 Self sensing hysteretic reconstruction; 5.2.5 Vibration control with self sensing reconstruction; 5.3 Comparison between linear and hysteretic reconstructions; 6 Conclusion. 
520 8 |a Annotation  |b Self sensing techniques allow using a piezoelectric transducer simultaneously as an actuator and as a sensor, as they reconstruct its mechanical sensory information by measuring its electrical quantities, i.e. voltage and charge. In vibration control applications piezoelectric self sensing actuators are highly desirable as they allow precise collocated control. Past research work was mainly based on the linear behavior of piezoelectric materials, thus restricting the operating driving voltages to low values. This work addresses the problem of using a self sensing piezoelectric actuator at its full driving voltage range. A new self sensing technique is proposed, which is based on the hysteretic modeling and identification of the piezoelectric transducer capacitance. After providing a sound presentation on piezoelectricity and vibrating structures, the most common self sensing techniques are discussed and the new self sensing technique is introduced and compared to typical linear methods both theoretically and experimentally. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Piezoelectric transducers. 
650 6 |a Transducteurs piézoélectriques. 
650 7 |a Piezoelectric transducers  |2 fast 
776 0 8 |i Print version:  |a Grasso, Emanuele.  |t Self Sensing Techniques for Piezoelectric Vibration Applications.  |d Berlin : Logos Verlag Berlin, ©2014  |z 9783832536237 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5219584  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5219584 
938 |a YBP Library Services  |b YANK  |n 15139339 
994 |a 92  |b IZTAP