Cargando…

Spatially independent Martingales, intersections, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Shmerkin, Pablo (Autor), Suomala, Ville, 1980- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1195.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1019875443
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180118t20182017riua ob 000 0 eng d
010 |a  2017054242 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCF  |d GZM  |d COD  |d COO  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCA  |d UKAHL  |d OCLCQ  |d VLY  |d N$T  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
066 |c (S 
019 |a 1162277769  |a 1262669102 
020 |a 9781470442644 
020 |a 1470442647 
020 |z 9781470426880  |q (alk. paper) 
020 |z 1470426889  |q (alk. paper) 
029 1 |a CHVBK  |b 523131623 
029 1 |a CHNEW  |b 001016172 
029 1 |a AU@  |b 000069424238 
035 |a (OCoLC)1019875443  |z (OCoLC)1162277769  |z (OCoLC)1262669102 
050 4 |a QA274.46  |b .S56 2018 
082 0 4 |a 519.2/36  |2 23 
049 |a UAMI 
100 1 |a Shmerkin, Pablo,  |e author. 
245 1 0 |a Spatially independent Martingales, intersections, and applications /  |c Pablo Shmerkin, Ville Suomala. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2017 
300 |a 1 online resource (v, 102 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 251, number 1195 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 99-102). 
500 |a "January 2018, volume 251, number 1195 (second of 6 numbers)." 
505 0 |a Introduction -- Notation -- The setting -- Holder continuity of intersections -- Classes of spatially independent martingales -- A geometric criterion for Holder continuity -- Affine intersections and projections -- Fractal boundaries and intersections with algebraic curves -- Intersections with self-similar sets and measures -- Dimension of projectiojns: applications of theorem 4.4. -- Upper bounds on dimensions of intersections -- Lower bounds for the dimension of intersections, and dimension conservation -- Products and convolutions of spatially independent martingales -- Applications to Fourier decay and restriction. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Random measures. 
650 0 |a Martingales (Mathematics) 
650 0 |a Stochastic processes. 
650 0 |a Intersection theory (Mathematics) 
650 6 |a Mesures aléatoires. 
650 6 |a Martingales (Mathématiques) 
650 6 |a Processus stochastiques. 
650 6 |a Théorie des intersections. 
650 7 |a Procesos estocásticos  |2 embne 
650 0 7 |a Intersección, Teoría de la  |2 embucm 
650 7 |a Intersection theory (Mathematics)  |2 fast 
650 7 |a Martingales (Mathematics)  |2 fast 
650 7 |a Random measures  |2 fast 
650 7 |a Stochastic processes  |2 fast 
700 1 |a Suomala, Ville,  |d 1980-  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
776 0 8 |i Print version record:  |a Shmerkin, Pablo.  |t Spatially independent Martingales, intersections, and applications.  |d Providence, RI : AMS, American Mathematical Society, [2018]  |z 9781470426880  |w (DLC) 2017054242  |w (OCoLC)1019843927 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1195. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5346254  |z Texto completo 
880 3 |6 520-00/(S  |a "We define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrized measures {ηt}t, and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of t. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Łaba in connection to the restriction problem for fractal measures."--Page v 
880 3 |6 520-00/(S  |a "We define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. We pair the random measures with deterministic families of parametrized measures {ηt}t, and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of t. This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals we establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, (d) rapid Fourier decay. Among other applications, we obtain an answer to a question of I. Laba in connection to the restriction problem for fractal measures."--Page v 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445142 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5346254 
938 |a EBSCOhost  |b EBSC  |n 1729301 
994 |a 92  |b IZTAP