Cargando…

The chemistry of membranes used in fuel cells : degradation and stabilization /

Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schlick, Shulamith (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., 2018.
Edición:1st.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xiii About the Editor xvii List of Contributors xix 1 The Evolution of Fuel Cells and Their Components 1; Thomas A. Zawodzinski, Zhijiang Tang, and Nelly Cantillo 1.1 Overview: A Personal Perspective of Recent Developments 1 1.2 Basics of Fuel Cell Operation 3 1.3 Types of Fuel Cells 5 1.3.1 Phosphoric Acid Fuel Cell 5 1.3.2 Molten Carbonate Fuel Cell and Solid Oxide Fuel Cell 5 1.3.3 Proton Exchange Membranes Fuel Cell 6 1.3.4 Alkaline Fuel Cell 6 1.3.5 Solid Acid Fuel Cell 8 1.4 Low Temperature Fuel Cells: Components 8 1.4.1 Membranes in PEM Systems 9 1.4.2 Electrocatalysts in PEM Systems 11 1.4.2.1 Catalyst Layer Structure in PEM Systems 13 1.5 Summary 16 Acknowledgments 16 References 16 2 Degradation Mechanism of Perfluorinated Membranes 19; Marek Danilczuk, Shulamith Schlick, and Frank D.
  • Coms 2.1 Introduction 19 2.2 Fluoride Release Rate 22 2.3 Nuclear Magnetic Resonance 26 2.4 Fourier Transform Infrared Spectroscopy 30 2.5 Electron Spin Resonance 37 2.5.1 Direct ESR Radical Detection in Perfluorinated Membranes 37 2.5.2 Spin Trapping ESR 40 2.5.3 In Situ ESR Fuel Cell 41 2.5.4 Chemical Reactions and Crossover Processes in a Fuel Cell 43 2.5.5 Effect of Membrane Thickness 46 2.6 Conclusions 49 Acknowledgments 51 References 51 3 Ranking the Stability of Perfluorinated Membranes to Attack by Hydroxyl Radicals 55; Marek Danilczuk and Shulamith Schlick 3.1 Introduction 55 3.2 The Chemical Stability of Perfluorinated Ionomers 57 3.3 Electron Spin Resonance Studies of PFSAs Exposed to Hydroxyl Radicals 61 3.3.1 Spin?\Trapping ESR 61 3.3.2 Competitive Kinetics: Perfluorinated Ionomers as Competitors for HO" Radicals.
  • 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75; Frank D.
  • Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107; Lorenz Gubler and Willem H.
  • Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer?\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139; Guanxiong Wang, Javier Parrondo,
  • And Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum?\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171; Vincenzo Arcella, Luca Merlo,
  • And Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195; Dongwon Shin, Chulsung Bae,
  • 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229; Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H• 235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241; Ted H. Yu, Boris V. Merinov, and William A.