Engineering plasticity : theory and applications in metal forming /
An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries -Provides a solid grounding in plasticity fundamentals and material properties -Features models, theorems and analysis of processes and relationships rel...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ, USA :
John Wiley & Sons Singapore Pte. Ltd,
2018.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright; Contents; Preface; Chapter 1 Fundamentals of Classical Plasticity; 1.1 Stress; 1.1.1 The Concept of Stress Components; 1.1.2 Description of the Stress State; 1.1.2.1 Stresses on an Arbitrary Inclined Plane; 1.1.2.2 Stress Components on an Oblique Plane; 1.1.2.3 Special Stresses; 1.1.2.4 Common Stress States; 1.1.3 Stress Tensors and Deviatoric Stress Tensors; 1.1.4 Mohr Stress Circles; 1.1.4.1 Mohr Circles for a Twoâ#x80;#x90;Dimensional Stress System; 1.1.4.2 Mohr Circles for a Threeâ#x80;#x90;Dimensional Stress System; 1.1.5 Equations of Force Equilibrium; 1.2 Strain.
- 1.2.1 Nominal Strain and True Strain1.2.2 Strain Components as Functions of Infinitesimal Displacements; 1.2.3 The Maximum Shear Strains and the Octahedral Strains; 1.2.4 Strain Rates and Strain Rate Tensors; 1.2.5 Incompressibility and Chief Deformation Types; 1.3 Yield Criteria; 1.3.1 The Concept of Yield Criterion; 1.3.2 Tresca Yield Criterion; 1.3.3 Mises Yield Criterion; 1.3.4 Twin Shear Stress Yield Criterion; 1.3.5 Yield Locus and Physical Concepts of Tresca, Mises, and Twin Shear Stress Yield Criteria; 1.3.5.1 Interpretation of Tresca Yield Criterion.
- 1.3.5.2 Interpretation of Twin Shear Stress Yield Criterion1.3.5.3 Interpretation of Mises Yield Criterion; 1.4 A General Yield Criterion; 1.4.1 Representation of General Yield Criterion; 1.4.2 Yield Surface and Physical Interpretation; 1.4.3 Simplified Yield Criterion; 1.5 Classical Theory about Plastic Stressâ#x80;#x93;Strain Relation; 1.5.1 Early Perception of Plastic Stress Strain Relations; 1.5.2 Concept of the Gradientâ#x80;#x90;Based Plasticity and Its Relation with Mises Yield Criterion; 1.5.2.1 Concept of the Plastic Potential; 1.5.2.2 Physical Interpretation of the Plastic Potential.
- 1.5.2.3 Physical Interpretation of Mises Yield Function (Plastic Potential)1.6 Effective Stress, Effective Strain, and Stress Type; 1.6.1 Effective Stress; 1.6.2 Effective Strain; 1.6.3 Stress Type; References; Chapter 2 Experimental Research on Material Mechanical Properties under Uniaxial Tension; 2.1 Stressâ#x80;#x93;Strain Relationship of Strainâ#x80;#x90;Strengthened Materials under Uniaxial Tensile Stress State; 2.2 The Stressâ#x80;#x93;Strain Relationship of the Strainâ#x80;#x90;Rateâ#x80;#x90;Hardened Materials in Uniaxial Tensile Tests.
- 2.3 Stressâ#x80;#x93;Strain Relationship in Uniaxial Tension during Coexistence of Strain Strengthening and Strain Rate Hardening2.4 Bauschinger Effect; 2.5 Tensile Tests for Automotive Deepâ#x80;#x90;Drawing Steels and Highâ#x80;#x90;Strength Steels; 2.5.1 Test Material and Experiment Scheme; 2.5.2 True Stressâ#x80;#x93;Strain Curves in Uniaxial Tension; 2.5.3 Mechanical Property Parameters of Sheets; 2.5.3.1 Strainâ#x80;#x90;Hardening Exponent n.; 2.5.3.2 Lankford Parameter R; 2.5.3.3 Plane Anisotropic Exponent Î#x94;R; 2.5.3.4 Yieldâ#x80;#x90;toâ#x80;#x90;Tensile Ratio Ï#x83;s/Ï#x83;b; 2.5.3.5 Uniform Elongation Îḿ; 2.6 Tensile Tests on Mgâ#x80;#x90;Alloys.
- 2.7 Tension Tests on Tiâ#x80;#x90;Alloys.