Behavior of Piles under Cyclic Loading : SOLCYP Recommendations.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Foreword
- Preface
- List of Symbols
- 1. SOLCYP Project
- 1.1. Motivations
- 1.2. The SOLCYP project
- 1.2.1. The ANR-SOLCYP program
- 1.2.2. The national SOLCYP project
- 1.2.3. Organization of the PN-SOLCYP
- 1.3. Content and nature of this book
- 1.4. Regulatory context
- 1.5. Bibliography
- 2. Scope and Field of Application of Recommendations
- 2.1. Variable loading and cyclic loading
- 2.2. Structures to which this discussion pertains
- 2.3. Effects of cyclic loading on the foundations
- 2.4. Types of piles
- 2.5. Types of soils
- 2.6. Bibliography
- 3. Cyclic Loadin
- 3.1. General
- 3.2. Characterization of cyclic loads
- 3.2.1. Regular loading: definitions
- 3.2.2. Cyclic loading of soil samples in the laboratory
- 3.2.3. Real-world cyclic loading
- 3.3. Taking account of real cyclic loading in the design process
- 3.3.1. Principle and definitions
- 3.3.2. Counting methods
- 3.3.3. Damage laws
- 3.4. Bibliography
- 4. Introduction to Cyclic Degradation
- 4.1. Introduction
- 4.2. Cyclic degradation of soil properties
- 4.2.1. Recap of the response of soils to monotonic loading
- 4.2.2. Soil response to cyclic loading
- 4.2.3. Contour diagrams
- 4.2.4. Generalized contour diagrams
- 4.2.5. Obtaining contour diagrams for a particular soil
- 4.2.6. Cyclic degradation of the shear modulus
- 4.3. Cyclic degradation of soil-pile interfaces
- 4.3.1. General considerations on soil-pile interface tests
- 4.3.2. SOLCYP databank on direct shear soil-pile tests
- 4.4. Cyclic degradation of pile response
- 4.4.1. Piles subjected to axial cyclic loading
- 4.4.2. Piles subject to lateral cyclic loading
- 4.5. Appendices
- 4.5.1. Appendix 1: Program of CNL and CNS tests and parameters influencing their outcome.
- 4.5.2. Appendix 2: CNS tests. Corrections to be made to the raw measurements
- 4.6. Bibliography
- 5. SOLCYP Design Strategy
- 5.1. General methodology
- 5.2. Knowledge pf loads
- 5.3. Analysis of regulatory loads
- 5.4. Criteria of cyclic severity for axial loads
- 5.4.1. Axial capacity of piles: definitions
- 5.4.2. Use of the cyclic stability diagram
- 5.4.3. Influence of soil-pile relative stiffness
- 5.5. Cyclic severity criteria for transverse loading
- 5.5.1. Case of sands
- 5.5.2. Case of clays
- 5.6. Detailed characterization of the cyclic loads
- 5.7. Cyclic pile design methods
- 5.8. Obtaining the parameters
- 5.9. Bibliography
- 6. Behavior of Piles Subject to Cyclic Axial Loading
- 6.1. Introduction
- 6.2. Large international programs
- 6.3. Tests in clay soils
- 6.3.1. Normally consolidated to slightly overconsolidated clays
- 6.3.2. Highly overconsolidated clays
- 6.3.3. Comparisons of the results
- 6.4. Tests in sands
- 6.4.1. Silica sand
- 6.4.2. Carbonate soils
- 6.5. About the static load-bearing capacity
- 6.5.1. Ageing in sands
- 6.5.2. Effect of time and preshearing in clays
- 6.5.3. Softening
- 6.5.4. Loading rate
- 6.6. Summary
- 6.7. Appendix: cyclic loading tests on piles at the Merville site
- 6.7.1. Introduction
- 6.7.2. Results obtained on two driven piles (B1 and B4)
- 6.7.3. Results obtained on bored (CFA) piles
- 6.7.4. Results obtained on bored screw piles
- 6.8. Bibliography
- 7. Design of Piles Subjected to Cyclic Axial Loading
- 7.1. Introduction
- 7.2. General principles
- 7.3. The NGI approach
- 7.3.1. Fundamental principles
- 7.3.2. PAXCY and PAX2 programs
- 7.4. The ICL approach
- 7.4.1. Basic principle
- 7.4.2. The ABC global method
- 7.4.3. Local applications of the ABC method
- 7.5. The RATZ-CYCLOPS suite of programs
- 7.6. The SCARP program.
- 7.6.1. Description of the SCARP program
- 7.6.2. Calibration of the SCARP program
- 7.7. Finite Element Method approaches
- 7.8. The SOLCYP approach for non-cohesive soils
- 7.8.1. General principles
- 7.8.2. Choice of parameters to characterize the soil-pile system
- 7.8.3. Modeling of the results of direct soil-structure shear
- 7.8.4. Modeling by the t-z envelope curve method
- 7.8.5. Modeling by the method of t-z cyclic curves (TZC software)
- 7.8.6. FEM modeling
- 7.8.7. Case of driven piles
- 7.9. Bibliography
- 8. Behavior of Piles Subject to Cyclic Lateral Loading
- 8.1. Soil-pile interaction under lateral loading
- 8.1.1. Relative stiffness
- 8.1.2. Concept of lateral reaction
- 8.1.3. Crucial role of surface layers
- 8.2. Main experimental data
- 8.3. Available data on the effect of the cycles
- 8.3.1. Effect of cycles on the pile's lateral displacement
- 8.3.2. Effect of cycles on the maximum bending moment in the pile
- 8.3.3. Effect of cycles on the P-y reaction curves
- 8.4. Contribution of the SOLCYP project
- 8.4.1. Context and scope of the studies conducted
- 8.4.2. Testing conditions
- 8.5. Data obtained on the effect of cycles
- 8.5.1. Case of sands
- 8.5.2. Case of clays
- 8.6. Final overview of the data on the effect of cycles
- 8.6.1. Effects on pile head displacement
- 8.6.2. Effects on the maximum moment and the reactions in the soil
- 8.7. Bibliography
- 9. Design of Piles Subject to Cyclic Lateral Loading
- 9.1. Recap of the current rules
- 9.2. Methodology to take account of cyclic loads
- 9.3. Taking account of the cycles by the global method SOLCYP-G
- 9.3.1. Principles of the global method
- 9.3.2. Conventional limit load and failure load
- 9.3.3. Degree of relative stiffness of the pile and limits of flexible andrigid piles.
- 9.3.4. Presizing of the pile subject to the maximum static load Hmax
- 9.3.5. Cyclic severity criteria
- 9.3.6. Effect of cycles on the pile head displacement
- 9.3.7. Effect of cycles on the maximum bending moment
- 9.4. Taking account of cycles by a local method SOLCYP-L
- 9.4.1. Principle of the local method
- 9.4.2. Determination of the P-multipliers for monotonic P-y curves
- 9.5. Domains of validity and example of application
- 9.5.1. Domains of validity of the global method SOLCYP-G and local method SOLCYP-L
- 9.5.2. Example of application of the global and local methods
- 9.6. Conclusion
- 9.7. Bibliography
- 10. Determination of Cyclic Parameters for Pile Design
- 10.1. Introduction
- 10.2. Parameters for the design of piles subjected to cyclic loads
- 10.2.1. Mineralogy
- 10.2.2. Parameters for monotonic calculations
- 10.2.3. Cyclic parameters
- 10.2.4. Consolidation parameters
- 10.2.5. Remolding parameters
- 10.3. Obtaining the parameters for the design of piles subjected to cyclic loading
- 10.3.1. Lab tests
- 10.3.2. In situ tests
- 10.4. Bibliography
- 11. Recommendations for Testing Piles Under Cyclic Loading
- 11.1. Introduction
- 11.2. Reasons for the tests
- 11.3. The different test methods
- 11.4. Contribution of calibration chamber tests: Axial loading
- 11.5. Contribution of centrifuge tests: Axial or transverse loading
- 11.6. In situ axial loading tests
- 11.6.1. Objectives of the test
- 11.6.2. Design support tests (FEED tests)
- 11.6.3. Validation tests (Non-Working Pile Tests)
- 11.6.4. Control tests (Working Pile Tests)
- 11.7. Transverse loading tests in situ
- 11.7.1. Objectives and representativity of tests
- 11.7.2. Design support tests (FEED tests)
- 11.7.3. Validation tests (Non-Working Pile Tests)
- 11.7.4. Control tests (Working Pile Tests).
- 11.8. Appendix 1: Recap on scaling effects
- 11.8.1. Tests on reduced-scale models in the lab
- 11.8.2. Tests of piles in situ
- 11.9. Appendix 2: In situ axial loading
- 11.9.1. Test setup
- 11.9.2. Instrumentation and data acquisition
- 11.10. Appendix 3: Transverse loading in situ
- 11.10.1. Test setup
- 11.10.2. Instrumentation and data acquisition
- 11.11. Bibliography
- Index
- Other titles from iSTE in Civil Engineering and Geomechanics
- EULA.