Topic Detection and Classification in Social Networks : the Twitter Case.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing AG, z. Hd. Alexander Grossmann,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Acknowledgments
- Contents
- Acronyms
- 1 Introduction
- 1.1 Dynamic Social Networks
- 1.1.1 The Twitter Social Network
- 1.2 Research and Technical Challenges
- 1.3 Problem Statement and Objectives
- 1.4 Scope and Plan of the Book
- 2 Background and Related Work
- 2.1 Introduction
- 2.2 Document-Pivot Methods
- 2.3 Feature-Pivot Methods
- 2.4 Related Work
- 2.4.1 Problem Definition
- 2.4.2 Data Preprocessing
- 2.4.3 Latent Dirichlet Allocation
- 2.4.4 Document-Pivot Topic Detection
- 2.4.5 Graph-Based Feature-Pivot Topic Detection2.4.6 Frequent Pattern Mining
- 2.4.7 Soft Frequent Pattern Mining
- 2.4.8 BNgram
- 2.5 Chapter Summary
- 3 Joint Sequence Complexity: Introduction and Theory
- 3.1 Introduction
- 3.2 Sequence Complexity
- 3.3 Joint Complexity
- 3.4 Contributions and Results
- 3.4.1 Models and Notations
- 3.4.2 Summary of Contributions and Results
- 3.5 Proofs of Contributions and Results
- 3.5.1 An Important Asymptotic Equivalence
- 3.5.2 Functional Equations
- 3.5.3 Double DePoissonization
- 3.5.4 Same Markov Sources3.5.5 Different Markov Sources
- 3.6 Expending Asymptotics and Periodic Terms
- 3.7 Numerical Experiments in Twitter
- 3.8 Suffix Trees
- 3.8.1 Examples of Suffix Trees
- 3.9 Snow Data Challenge
- 3.9.1 Topic Detection Method
- 3.9.2 Headlines
- 3.9.3 Keywords Extraction
- 3.9.4 Media URLs
- 3.9.5 Evaluation of Topic Detection
- 3.10 Tweet Classification
- 3.10.1 Tweet Augmentation
- 3.10.2 Training Phase
- 3.10.3 Run Phase
- 3.10.4 Experimental Results on Tweet Classification
- 3.10.4.1 Classification Performance Based on Ground Truth3.11 Chapter Summary
- 4 Text Classification via Compressive Sensing
- 4.1 Introduction
- 4.2 Compressive Sensing Theory
- 4.3 Compressive Sensing Classification
- 4.3.1 Training Phase
- 4.3.2 Run Phase
- 4.4 Tracking via Kalman Filter
- 4.5 Experimental Results
- 4.5.1 Classification Performance Based on Ground Truth
- 4.6 Chapter Summary
- 5 Extension of Joint Complexity and Compressive Sensing
- 5.1 Introduction
- 5.2 Classification Encryption via Compressed Permuted Measurement Matrices
- 5.2.1 Preprocessing Phase5.2.2 Run Phase
- 5.2.3 Security System Architecture
- 5.2.3.1 Privacy System
- 5.2.3.2 Key Description
- 5.2.4 Possible Attacks from Malicious Users
- 5.2.5 Experimental Results
- 5.3 Dynamic Classification Completeness
- 5.3.1 Motivation
- 5.3.2 Proposed Framework
- 5.3.3 Experimental Results
- 5.4 Stealth Encryption Based on Eulerian Circuits
- 5.4.1 Background
- 5.4.1.1 Syntax Graph
- 5.4.1.2 Eulerian Path and Circuit
- 5.4.2 Motivation and Algorithm Description
- 5.4.2.1 Motivation