Cargando…

Topic Detection and Classification in Social Networks : the Twitter Case.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Milioris, Dimitrios
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing AG, z. Hd. Alexander Grossmann, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1013823106
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 171202s2017 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d UKAHL  |d OCLCQ  |d REDDC  |d OCLCF  |d OCLCO  |d OCLCL 
019 |a 1006461747 
020 |a 9783319664149 
020 |a 331966414X 
020 |z 9783319664132 
020 |z 3319664131 
035 |a (OCoLC)1013823106  |z (OCoLC)1006461747 
050 4 |a TA1-2040 
082 0 4 |a 620 
049 |a UAMI 
100 1 |a Milioris, Dimitrios. 
245 1 0 |a Topic Detection and Classification in Social Networks :  |b the Twitter Case. 
260 |a Cham :  |b Springer International Publishing AG, z. Hd. Alexander Grossmann,  |c 2017. 
300 |a 1 online resource (113 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Introduction -- 1.1 Dynamic Social Networks -- 1.1.1 The Twitter Social Network -- 1.2 Research and Technical Challenges -- 1.3 Problem Statement and Objectives -- 1.4 Scope and Plan of the Book -- 2 Background and Related Work -- 2.1 Introduction -- 2.2 Document-Pivot Methods -- 2.3 Feature-Pivot Methods -- 2.4 Related Work -- 2.4.1 Problem Definition -- 2.4.2 Data Preprocessing -- 2.4.3 Latent Dirichlet Allocation -- 2.4.4 Document-Pivot Topic Detection 
505 8 |a 2.4.5 Graph-Based Feature-Pivot Topic Detection2.4.6 Frequent Pattern Mining -- 2.4.7 Soft Frequent Pattern Mining -- 2.4.8 BNgram -- 2.5 Chapter Summary -- 3 Joint Sequence Complexity: Introduction and Theory -- 3.1 Introduction -- 3.2 Sequence Complexity -- 3.3 Joint Complexity -- 3.4 Contributions and Results -- 3.4.1 Models and Notations -- 3.4.2 Summary of Contributions and Results -- 3.5 Proofs of Contributions and Results -- 3.5.1 An Important Asymptotic Equivalence -- 3.5.2 Functional Equations -- 3.5.3 Double DePoissonization 
505 8 |a 3.5.4 Same Markov Sources3.5.5 Different Markov Sources -- 3.6 Expending Asymptotics and Periodic Terms -- 3.7 Numerical Experiments in Twitter -- 3.8 Suffix Trees -- 3.8.1 Examples of Suffix Trees -- 3.9 Snow Data Challenge -- 3.9.1 Topic Detection Method -- 3.9.2 Headlines -- 3.9.3 Keywords Extraction -- 3.9.4 Media URLs -- 3.9.5 Evaluation of Topic Detection -- 3.10 Tweet Classification -- 3.10.1 Tweet Augmentation -- 3.10.2 Training Phase -- 3.10.3 Run Phase -- 3.10.4 Experimental Results on Tweet Classification 
505 8 |a 3.10.4.1 Classification Performance Based on Ground Truth3.11 Chapter Summary -- 4 Text Classification via Compressive Sensing -- 4.1 Introduction -- 4.2 Compressive Sensing Theory -- 4.3 Compressive Sensing Classification -- 4.3.1 Training Phase -- 4.3.2 Run Phase -- 4.4 Tracking via Kalman Filter -- 4.5 Experimental Results -- 4.5.1 Classification Performance Based on Ground Truth -- 4.6 Chapter Summary -- 5 Extension of Joint Complexity and Compressive Sensing -- 5.1 Introduction -- 5.2 Classification Encryption via Compressed Permuted Measurement Matrices 
505 8 |a 5.2.1 Preprocessing Phase5.2.2 Run Phase -- 5.2.3 Security System Architecture -- 5.2.3.1 Privacy System -- 5.2.3.2 Key Description -- 5.2.4 Possible Attacks from Malicious Users -- 5.2.5 Experimental Results -- 5.3 Dynamic Classification Completeness -- 5.3.1 Motivation -- 5.3.2 Proposed Framework -- 5.3.3 Experimental Results -- 5.4 Stealth Encryption Based on Eulerian Circuits -- 5.4.1 Background -- 5.4.1.1 Syntax Graph -- 5.4.1.2 Eulerian Path and Circuit -- 5.4.2 Motivation and Algorithm Description -- 5.4.2.1 Motivation 
500 |a ""5.4.2.2 Algorithm Description"" 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a Twitter. 
630 0 7 |a Twitter  |2 fast 
650 0 |a Data mining. 
650 0 |a Online social networks. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Réseaux sociaux (Internet) 
650 7 |a Data mining  |2 fast 
650 7 |a Online social networks  |2 fast 
758 |i has work:  |a Topic Detection and Classification in Social Networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXjpJpM9hDkQDwm4rJ447b  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Milioris, Dimitrios.  |t Topic Detection and Classification in Social Networks : The Twitter Case.  |d Cham : Springer International Publishing AG, z. Hd. Alexander Grossmann, ©2017  |z 9783319664132 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5091721  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33857005 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5091721 
938 |a YBP Library Services  |b YANK  |n 14879980 
994 |a 92  |b IZTAP