|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1013823106 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
171202s2017 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OCLCQ
|d UKAHL
|d OCLCQ
|d REDDC
|d OCLCF
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1006461747
|
020 |
|
|
|a 9783319664149
|
020 |
|
|
|a 331966414X
|
020 |
|
|
|z 9783319664132
|
020 |
|
|
|z 3319664131
|
035 |
|
|
|a (OCoLC)1013823106
|z (OCoLC)1006461747
|
050 |
|
4 |
|a TA1-2040
|
082 |
0 |
4 |
|a 620
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Milioris, Dimitrios.
|
245 |
1 |
0 |
|a Topic Detection and Classification in Social Networks :
|b the Twitter Case.
|
260 |
|
|
|a Cham :
|b Springer International Publishing AG, z. Hd. Alexander Grossmann,
|c 2017.
|
300 |
|
|
|a 1 online resource (113 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Introduction -- 1.1 Dynamic Social Networks -- 1.1.1 The Twitter Social Network -- 1.2 Research and Technical Challenges -- 1.3 Problem Statement and Objectives -- 1.4 Scope and Plan of the Book -- 2 Background and Related Work -- 2.1 Introduction -- 2.2 Document-Pivot Methods -- 2.3 Feature-Pivot Methods -- 2.4 Related Work -- 2.4.1 Problem Definition -- 2.4.2 Data Preprocessing -- 2.4.3 Latent Dirichlet Allocation -- 2.4.4 Document-Pivot Topic Detection
|
505 |
8 |
|
|a 2.4.5 Graph-Based Feature-Pivot Topic Detection2.4.6 Frequent Pattern Mining -- 2.4.7 Soft Frequent Pattern Mining -- 2.4.8 BNgram -- 2.5 Chapter Summary -- 3 Joint Sequence Complexity: Introduction and Theory -- 3.1 Introduction -- 3.2 Sequence Complexity -- 3.3 Joint Complexity -- 3.4 Contributions and Results -- 3.4.1 Models and Notations -- 3.4.2 Summary of Contributions and Results -- 3.5 Proofs of Contributions and Results -- 3.5.1 An Important Asymptotic Equivalence -- 3.5.2 Functional Equations -- 3.5.3 Double DePoissonization
|
505 |
8 |
|
|a 3.5.4 Same Markov Sources3.5.5 Different Markov Sources -- 3.6 Expending Asymptotics and Periodic Terms -- 3.7 Numerical Experiments in Twitter -- 3.8 Suffix Trees -- 3.8.1 Examples of Suffix Trees -- 3.9 Snow Data Challenge -- 3.9.1 Topic Detection Method -- 3.9.2 Headlines -- 3.9.3 Keywords Extraction -- 3.9.4 Media URLs -- 3.9.5 Evaluation of Topic Detection -- 3.10 Tweet Classification -- 3.10.1 Tweet Augmentation -- 3.10.2 Training Phase -- 3.10.3 Run Phase -- 3.10.4 Experimental Results on Tweet Classification
|
505 |
8 |
|
|a 3.10.4.1 Classification Performance Based on Ground Truth3.11 Chapter Summary -- 4 Text Classification via Compressive Sensing -- 4.1 Introduction -- 4.2 Compressive Sensing Theory -- 4.3 Compressive Sensing Classification -- 4.3.1 Training Phase -- 4.3.2 Run Phase -- 4.4 Tracking via Kalman Filter -- 4.5 Experimental Results -- 4.5.1 Classification Performance Based on Ground Truth -- 4.6 Chapter Summary -- 5 Extension of Joint Complexity and Compressive Sensing -- 5.1 Introduction -- 5.2 Classification Encryption via Compressed Permuted Measurement Matrices
|
505 |
8 |
|
|a 5.2.1 Preprocessing Phase5.2.2 Run Phase -- 5.2.3 Security System Architecture -- 5.2.3.1 Privacy System -- 5.2.3.2 Key Description -- 5.2.4 Possible Attacks from Malicious Users -- 5.2.5 Experimental Results -- 5.3 Dynamic Classification Completeness -- 5.3.1 Motivation -- 5.3.2 Proposed Framework -- 5.3.3 Experimental Results -- 5.4 Stealth Encryption Based on Eulerian Circuits -- 5.4.1 Background -- 5.4.1.1 Syntax Graph -- 5.4.1.2 Eulerian Path and Circuit -- 5.4.2 Motivation and Algorithm Description -- 5.4.2.1 Motivation
|
500 |
|
|
|a ""5.4.2.2 Algorithm Description""
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
630 |
0 |
0 |
|a Twitter.
|
630 |
0 |
7 |
|a Twitter
|2 fast
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Online social networks.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Réseaux sociaux (Internet)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Online social networks
|2 fast
|
758 |
|
|
|i has work:
|a Topic Detection and Classification in Social Networks (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCXjpJpM9hDkQDwm4rJ447b
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Milioris, Dimitrios.
|t Topic Detection and Classification in Social Networks : The Twitter Case.
|d Cham : Springer International Publishing AG, z. Hd. Alexander Grossmann, ©2017
|z 9783319664132
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5091721
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33857005
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5091721
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14879980
|
994 |
|
|
|a 92
|b IZTAP
|