Mechanics of Microsystems.
Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems ta...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2017.
|
Colección: | Microsystem and Nanotechnology Series (ME20) Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Dedication
- Contents
- Series Preface
- Preface
- Acknowledgements
- Notation
- About the Companion Website
- Chapter 1 Introduction
- 1.1 Microsystems
- 1.2 Microsystems Fabrication
- 1.3 Mechanics in Microsystems
- 1.4 Book Contents
- References
- Part I Fundamentals
- Chapter 2 Fundamentals of Mechanics and Coupled Problems
- 2.1 Introduction
- 2.2 Kinematics and Dynamics of Material Points and Rigid Bodies
- 2.2.1 Basic Notions of Kinematics and Motion Composition
- 2.2.1.1 Summary
- 2.2.2 Basic Notions of Dynamics and Relative Dynamics
- 2.2.2.1 Summary
- 2.2.3 One‐Degree‐of‐Freedom Oscillator
- 2.2.3.1 Summary
- 2.2.4 Rigid‐Body Kinematics and Dynamics
- 2.2.4.1 Rigid‐Body Kinematics
- 2.2.4.2 Rigid‐Body Dynamics
- 2.2.4.3 Summary
- 2.3 Solid Mechanics
- 2.3.1 Linear Elastic Problem for Deformable Solids
- 2.3.1.1 Linear Elastic Cubic Material
- 2.3.1.2 Linear Elastic Transversely Isotropic Material
- 2.3.1.3 Linear Elastic Orthotropic Material
- 2.3.1.4 Summary
- 2.3.2 Linear Elastic Problem for Beams
- 2.3.2.1 Examples
- 2.3.2.2 Summary
- 2.4 Fluid Mechanics
- 2.4.1 Navier-Stokes Equations
- 2.4.1.1 Newtonian Fluids
- 2.4.1.2 Incompressible Fluids
- 2.4.1.3 Perfect Fluids
- 2.4.1.4 Stokes Flow
- 2.4.1.5 Initial and Boundary Conditions
- 2.4.1.6 Summary
- 2.4.2 Fluid-Structure Interaction
- 2.5 Electrostatics and Electromechanics
- 2.5.1 Basic Notions of Electrostatics
- 2.5.1.1 Examples
- 2.5.1.2 Summary
- 2.5.2 Simple Electromechanical Problem
- 2.5.2.1 Static Equilibrium
- 2.5.2.2 Dynamic Response
- 2.5.2.3 Summary
- 2.5.3 General Electromechanical Coupled Problem
- 2.5.3.1 Summary
- 2.6 Piezoelectric Materials in Microsystems
- 2.6.1 Piezoelectric Materials
- 2.6.2 Piezoelectric Modelling
- 2.6.2.1 Summary.
- 2.7 Heat Conduction and Thermomechanics
- 2.7.1 Heat Problem
- 2.7.1.1 Example: Unidimensional Thermal Problem
- 2.7.1.2 Summary
- 2.7.2 Thermomechanical Coupled Problem
- 2.7.2.1 Summary
- References
- Chapter 3 Modelling of Linear and Nonlinear Mechanical Response
- 3.1 Introduction
- 3.2 Fundamental Principles
- 3.2.1 Principle of Virtual Power
- 3.2.2 Total Potential Energy Principle
- 3.2.3 Hamilton's Principle
- 3.2.4 Specialization of the Principle of Virtual Powers to Beams
- 3.3 Approximation Techniques and Weighted Residuals Approach
- 3.4 Exact and Approximate Solutions for Dynamic Problems
- 3.4.1 Free Flexural Linear Vibrations of a Single‐span Beam
- 3.4.2 Nonlinear Vibration of an Axially Loaded Beam
- 3.5 Example of Application: Bistable Elements
- References
- Part II Devices
- Chapter 4 Accelerometers
- 4.1 Introduction
- 4.2 Capacitive Accelerometers
- 4.2.1 In‐Plane Sensing
- 4.2.2 Out‐of‐Plane Sensing
- 4.3 Resonant Accelerometers
- 4.3.1 Resonating Proof Mass
- 4.3.2 Resonating Elements Coupled to the Proof Mass
- 4.4 Examples
- 4.4.1 Three‐Axis Capacitive Accelerometer
- 4.4.2 Out‐of‐Plane Resonant Accelerometer
- 4.4.3 In‐Plane Resonant Accelerometer
- 4.5 Design Problems and Reliability Issues
- References
- Chapter 5 Coriolis‐Based Gyroscopes
- 5.1 Introduction
- 5.2 Basic Working Principle
- 5.2.1 Sensitivity of Coriolis Vibratory Gyroscopes
- 5.3 Lumped‐Mass Gyroscopes
- 5.3.1 Symmetric and Decoupled Gyroscope
- 5.3.2 Tuning‐Fork Gyroscope
- 5.3.3 Three‐Axis Gyroscope
- 5.3.4 Gyroscopes with Resonant Sensing
- 5.4 Disc and Ring Gyroscopes
- 5.5 Design Problems and Reliability Issues
- References
- Chapter 6 Resonators
- 6.1 Introduction
- 6.2 Electrostatically Actuated Resonators
- 6.3 Piezoelectric Resonators
- 6.4 Nonlinearity Issues
- References.
- Chapter 7 Micromirrors and Parametric Resonance
- 7.1 Introduction
- 7.2 Electrostatic Resonant Micromirror
- 7.2.1 Numerical Simulations with a Continuation Approach
- 7.2.1.1 Computation of the Electrostatic Torque and its Derivative via Direct Finite Element Method
- 7.2.2 Experimental Set‐Up
- 7.2.2.1 Sinusoidal Excitation
- 7.2.2.2 Square Wave Excitation
- References
- Chapter 8 Vibrating Lorentz Force Magnetometers
- 8.1 Introduction
- 8.2 Vibrating Lorentz Force Magnetometers
- 8.2.1 Classical Devices
- 8.2.2 Improved Design
- 8.2.3 Further Improvements
- 8.3 Topology or Geometry Optimization
- References
- Chapter 9 Mechanical Energy Harvesters
- 9.1 Introduction
- 9.2 Inertial Energy Harvesters
- 9.2.1 Classification of Resonant Energy Harvesters
- 9.2.2 Mechanical Model of a Simple Piezoelectric Harvester
- 9.2.2.1 Piezoelectric Constitutive Law for Beams
- 9.2.2.2 The Principle of Virtual Power for a Piezoelectric Cantilever Beam
- 9.2.2.3 Governing Equations via the Weighted Residuals Approach
- 9.2.2.4 Solution in the Frequency Domain
- 9.3 Frequency Upconversion and Bistability
- 9.4 Fluid-Structure Interaction Energy Harvesters
- 9.4.1 Synopsis of Aeroelastic Phenomena
- 9.4.1.1 Vortex‐Induced Vibration
- 9.4.1.2 Flutter Instability
- 9.4.2 Energy Harvesting through Vortex‐Induced Vibration
- 9.4.3 Energy Harvesting through Flutter Instability
- References
- Chapter 10 Micropumps
- 10.1 Introduction
- 10.2 Modelling Issues for Diaphragm Micropumps
- 10.3 Modelling of Electrostatic Actuator
- 10.3.1 Simplified Electromechanical Model
- 10.3.1.1 The Principle of Virtual Work for an Axisymmetric Plate
- 10.3.1.2 Electrostatic Forces
- 10.3.1.3 Governing Equations via the Weighted Residuals Approach
- 10.3.2 Reliability Issues
- 10.3.2.1 Electrostatic Pull‐In
- 10.3.2.2 Adhesion.
- 10.3.2.3 Actuator Control
- 10.4 Multiphysics Model of an Electrostatic Micropump
- 10.5 Piezoelectric Micropumps
- 10.5.1 Modelling of the Actuator
- 10.5.2 Complete Multiphysics Model
- References
- Part III Reliability and Dissipative Phenomena
- Chapter 11 Mechanical Characterization at the Microscale
- 11.1 Introduction
- 11.2 Mechanical Characterization of Polysilicon as a Structural Material for Microsystems
- 11.2.1 Polysilicon as a Structural Material for Microsystems
- 11.2.2 Testing Methodologies
- 11.2.3 Quasi‐Static Testing
- 11.2.3.1 Off‐Chip Tension Test
- 11.2.3.2 Off‐Chip and On‐Chip Bending Test
- 11.2.3.3 Test on Membranes (Bulge Test)
- 11.2.3.4 Nanoindenter‐Driven Test
- 11.2.4 High‐Frequency Testing
- 11.2.4.1 Fatigue Mechanisms
- 11.3 Weibull Approach
- 11.4 On‐Chip Testing Methodology for Experimental Determination of Elastic Stiffness and Nominal Strength
- 11.4.1 On‐Chip Bending Test through a Comb‐Finger Rotational Electrostatic Actuator
- 11.4.1.1 General Description
- 11.4.1.2 Data Reduction Procedure
- 11.4.1.3 Experimental Results
- 11.4.2 On‐Chip Bending Test through a Parallel‐Plate Electrostatic Actuator
- 11.4.2.1 General Description
- 11.4.2.2 Data Reduction Procedure
- 11.4.2.3 Experimental Results
- 11.4.3 On‐Chip Tensile Test through an Electrothermomechanical Actuator
- 11.4.3.1 General Description
- 11.4.3.2 Data Reduction Procedure
- 11.4.3.3 Experimental Results
- 11.4.4 On‐Chip Test for Thick Polysilicon Films
- 11.4.4.1 General Description
- 11.4.4.2 Data Reduction Procedure
- 11.4.4.3 Experimental Results
- References
- Chapter 12 Fracture and Fatigue in Microsystems
- 12.1 Introduction
- 12.2 Fracture Mechanics: An Overview
- 12.3 MEMS Failure Modes due to Cracking
- 12.3.1 Cracking and Delamination at Package Level
- 12.3.2 Cracking at Silicon Film Level.
- 12.4 Fatigue in Microsystems
- 12.4.1 An Introduction to Fatigue in Mechanics
- 12.4.2 Polysilicon Fatigue
- 12.4.3 Fatigue in Metals at the Microscale
- 12.4.4 Fatigue Testing at the Microscale
- References
- Chapter 13 Accidental Drop Impact
- 13.1 Introduction
- 13.2 Single‐Degree‐of‐Freedom Response to Drops
- 13.3 Estimation of the Acceleration Peak Induced by an Accidental Drop
- 13.4 A Multiscale Approach to Drop Impact Events
- 13.4.1 Macroscale Level
- 13.4.2 Mesoscale Level
- 13.4.3 Microscale Level
- 13.5 Results: Drop‐Induced Failure of Inertial MEMS
- References
- Chapter 14 Fabrication‐Induced Residual Stresses and Relevant Failures
- 14.1 Main Sources of Residual Stresses in Microsystems
- 14.2 The Stoney Formula and its Modifications
- 14.3 Experimental Methods for the Evaluation of Residual Stresses
- 14.4 Delamination, Buckling and Cracks in Thin Films due to Residual Stresses
- References
- Chapter 15 Damping in Microsystems
- 15.1 Introduction
- 15.2 Gas Damping in the Continuum Regime with Slip Boundary Conditions
- 15.2.1 Experimental Validation at Ambient Pressure
- 15.2.2 Effects of Decreasing Working Pressure
- 15.3 Gas Damping in the Rarefied Regime
- 15.3.1 Evaluation of Damping at Low Pressure using Kinetic Models
- 15.3.2 Linearization of the BGK Model
- 15.3.3 Numerical Implementation
- 15.3.4 Application to MEMS
- 15.4 Gas Damping in the Free‐Molecule Regime
- 15.4.1 Boundary Integral Equation Approach
- 15.4.2 Experimental Validations
- 15.5 Solid Damping: Thermoelasticity
- 15.6 Solid Damping: Anchor Losses
- 15.6.1 Analytical Estimation of Dissipation
- 15.6.1.1 Applications: Axial and Bending Modes
- 15.6.2 Numerical Estimation of Anchor Losses
- 15.7 Solid Damping: Additional unknown Sources
- Surface Losses
- 15.7.1 Solid Damping: Deviations from Thermoelasticity.