Cargando…

Mechanics of Microsystems.

Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems ta...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Corigliano, Alberto
Otros Autores: Ardito, Raffaele, Comi, Claudia, Frangi, Attilio, Ghisi, Aldo, Mariani, Stefano
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:Microsystem and Nanotechnology Series (ME20) Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Dedication
  • Contents
  • Series Preface
  • Preface
  • Acknowledgements
  • Notation
  • About the Companion Website
  • Chapter 1 Introduction
  • 1.1 Microsystems
  • 1.2 Microsystems Fabrication
  • 1.3 Mechanics in Microsystems
  • 1.4 Book Contents
  • References
  • Part I Fundamentals
  • Chapter 2 Fundamentals of Mechanics and Coupled Problems
  • 2.1 Introduction
  • 2.2 Kinematics and Dynamics of Material Points and Rigid Bodies
  • 2.2.1 Basic Notions of Kinematics and Motion Composition
  • 2.2.1.1 Summary
  • 2.2.2 Basic Notions of Dynamics and Relative Dynamics
  • 2.2.2.1 Summary
  • 2.2.3 One‐Degree‐of‐Freedom Oscillator
  • 2.2.3.1 Summary
  • 2.2.4 Rigid‐Body Kinematics and Dynamics
  • 2.2.4.1 Rigid‐Body Kinematics
  • 2.2.4.2 Rigid‐Body Dynamics
  • 2.2.4.3 Summary
  • 2.3 Solid Mechanics
  • 2.3.1 Linear Elastic Problem for Deformable Solids
  • 2.3.1.1 Linear Elastic Cubic Material
  • 2.3.1.2 Linear Elastic Transversely Isotropic Material
  • 2.3.1.3 Linear Elastic Orthotropic Material
  • 2.3.1.4 Summary
  • 2.3.2 Linear Elastic Problem for Beams
  • 2.3.2.1 Examples
  • 2.3.2.2 Summary
  • 2.4 Fluid Mechanics
  • 2.4.1 Navier-Stokes Equations
  • 2.4.1.1 Newtonian Fluids
  • 2.4.1.2 Incompressible Fluids
  • 2.4.1.3 Perfect Fluids
  • 2.4.1.4 Stokes Flow
  • 2.4.1.5 Initial and Boundary Conditions
  • 2.4.1.6 Summary
  • 2.4.2 Fluid-Structure Interaction
  • 2.5 Electrostatics and Electromechanics
  • 2.5.1 Basic Notions of Electrostatics
  • 2.5.1.1 Examples
  • 2.5.1.2 Summary
  • 2.5.2 Simple Electromechanical Problem
  • 2.5.2.1 Static Equilibrium
  • 2.5.2.2 Dynamic Response
  • 2.5.2.3 Summary
  • 2.5.3 General Electromechanical Coupled Problem
  • 2.5.3.1 Summary
  • 2.6 Piezoelectric Materials in Microsystems
  • 2.6.1 Piezoelectric Materials
  • 2.6.2 Piezoelectric Modelling
  • 2.6.2.1 Summary.
  • 2.7 Heat Conduction and Thermomechanics
  • 2.7.1 Heat Problem
  • 2.7.1.1 Example: Unidimensional Thermal Problem
  • 2.7.1.2 Summary
  • 2.7.2 Thermomechanical Coupled Problem
  • 2.7.2.1 Summary
  • References
  • Chapter 3 Modelling of Linear and Nonlinear Mechanical Response
  • 3.1 Introduction
  • 3.2 Fundamental Principles
  • 3.2.1 Principle of Virtual Power
  • 3.2.2 Total Potential Energy Principle
  • 3.2.3 Hamilton's Principle
  • 3.2.4 Specialization of the Principle of Virtual Powers to Beams
  • 3.3 Approximation Techniques and Weighted Residuals Approach
  • 3.4 Exact and Approximate Solutions for Dynamic Problems
  • 3.4.1 Free Flexural Linear Vibrations of a Single‐span Beam
  • 3.4.2 Nonlinear Vibration of an Axially Loaded Beam
  • 3.5 Example of Application: Bistable Elements
  • References
  • Part II Devices
  • Chapter 4 Accelerometers
  • 4.1 Introduction
  • 4.2 Capacitive Accelerometers
  • 4.2.1 In‐Plane Sensing
  • 4.2.2 Out‐of‐Plane Sensing
  • 4.3 Resonant Accelerometers
  • 4.3.1 Resonating Proof Mass
  • 4.3.2 Resonating Elements Coupled to the Proof Mass
  • 4.4 Examples
  • 4.4.1 Three‐Axis Capacitive Accelerometer
  • 4.4.2 Out‐of‐Plane Resonant Accelerometer
  • 4.4.3 In‐Plane Resonant Accelerometer
  • 4.5 Design Problems and Reliability Issues
  • References
  • Chapter 5 Coriolis‐Based Gyroscopes
  • 5.1 Introduction
  • 5.2 Basic Working Principle
  • 5.2.1 Sensitivity of Coriolis Vibratory Gyroscopes
  • 5.3 Lumped‐Mass Gyroscopes
  • 5.3.1 Symmetric and Decoupled Gyroscope
  • 5.3.2 Tuning‐Fork Gyroscope
  • 5.3.3 Three‐Axis Gyroscope
  • 5.3.4 Gyroscopes with Resonant Sensing
  • 5.4 Disc and Ring Gyroscopes
  • 5.5 Design Problems and Reliability Issues
  • References
  • Chapter 6 Resonators
  • 6.1 Introduction
  • 6.2 Electrostatically Actuated Resonators
  • 6.3 Piezoelectric Resonators
  • 6.4 Nonlinearity Issues
  • References.
  • Chapter 7 Micromirrors and Parametric Resonance
  • 7.1 Introduction
  • 7.2 Electrostatic Resonant Micromirror
  • 7.2.1 Numerical Simulations with a Continuation Approach
  • 7.2.1.1 Computation of the Electrostatic Torque and its Derivative via Direct Finite Element Method
  • 7.2.2 Experimental Set‐Up
  • 7.2.2.1 Sinusoidal Excitation
  • 7.2.2.2 Square Wave Excitation
  • References
  • Chapter 8 Vibrating Lorentz Force Magnetometers
  • 8.1 Introduction
  • 8.2 Vibrating Lorentz Force Magnetometers
  • 8.2.1 Classical Devices
  • 8.2.2 Improved Design
  • 8.2.3 Further Improvements
  • 8.3 Topology or Geometry Optimization
  • References
  • Chapter 9 Mechanical Energy Harvesters
  • 9.1 Introduction
  • 9.2 Inertial Energy Harvesters
  • 9.2.1 Classification of Resonant Energy Harvesters
  • 9.2.2 Mechanical Model of a Simple Piezoelectric Harvester
  • 9.2.2.1 Piezoelectric Constitutive Law for Beams
  • 9.2.2.2 The Principle of Virtual Power for a Piezoelectric Cantilever Beam
  • 9.2.2.3 Governing Equations via the Weighted Residuals Approach
  • 9.2.2.4 Solution in the Frequency Domain
  • 9.3 Frequency Upconversion and Bistability
  • 9.4 Fluid-Structure Interaction Energy Harvesters
  • 9.4.1 Synopsis of Aeroelastic Phenomena
  • 9.4.1.1 Vortex‐Induced Vibration
  • 9.4.1.2 Flutter Instability
  • 9.4.2 Energy Harvesting through Vortex‐Induced Vibration
  • 9.4.3 Energy Harvesting through Flutter Instability
  • References
  • Chapter 10 Micropumps
  • 10.1 Introduction
  • 10.2 Modelling Issues for Diaphragm Micropumps
  • 10.3 Modelling of Electrostatic Actuator
  • 10.3.1 Simplified Electromechanical Model
  • 10.3.1.1 The Principle of Virtual Work for an Axisymmetric Plate
  • 10.3.1.2 Electrostatic Forces
  • 10.3.1.3 Governing Equations via the Weighted Residuals Approach
  • 10.3.2 Reliability Issues
  • 10.3.2.1 Electrostatic Pull‐In
  • 10.3.2.2 Adhesion.
  • 10.3.2.3 Actuator Control
  • 10.4 Multiphysics Model of an Electrostatic Micropump
  • 10.5 Piezoelectric Micropumps
  • 10.5.1 Modelling of the Actuator
  • 10.5.2 Complete Multiphysics Model
  • References
  • Part III Reliability and Dissipative Phenomena
  • Chapter 11 Mechanical Characterization at the Microscale
  • 11.1 Introduction
  • 11.2 Mechanical Characterization of Polysilicon as a Structural Material for Microsystems
  • 11.2.1 Polysilicon as a Structural Material for Microsystems
  • 11.2.2 Testing Methodologies
  • 11.2.3 Quasi‐Static Testing
  • 11.2.3.1 Off‐Chip Tension Test
  • 11.2.3.2 Off‐Chip and On‐Chip Bending Test
  • 11.2.3.3 Test on Membranes (Bulge Test)
  • 11.2.3.4 Nanoindenter‐Driven Test
  • 11.2.4 High‐Frequency Testing
  • 11.2.4.1 Fatigue Mechanisms
  • 11.3 Weibull Approach
  • 11.4 On‐Chip Testing Methodology for Experimental Determination of Elastic Stiffness and Nominal Strength
  • 11.4.1 On‐Chip Bending Test through a Comb‐Finger Rotational Electrostatic Actuator
  • 11.4.1.1 General Description
  • 11.4.1.2 Data Reduction Procedure
  • 11.4.1.3 Experimental Results
  • 11.4.2 On‐Chip Bending Test through a Parallel‐Plate Electrostatic Actuator
  • 11.4.2.1 General Description
  • 11.4.2.2 Data Reduction Procedure
  • 11.4.2.3 Experimental Results
  • 11.4.3 On‐Chip Tensile Test through an Electrothermomechanical Actuator
  • 11.4.3.1 General Description
  • 11.4.3.2 Data Reduction Procedure
  • 11.4.3.3 Experimental Results
  • 11.4.4 On‐Chip Test for Thick Polysilicon Films
  • 11.4.4.1 General Description
  • 11.4.4.2 Data Reduction Procedure
  • 11.4.4.3 Experimental Results
  • References
  • Chapter 12 Fracture and Fatigue in Microsystems
  • 12.1 Introduction
  • 12.2 Fracture Mechanics: An Overview
  • 12.3 MEMS Failure Modes due to Cracking
  • 12.3.1 Cracking and Delamination at Package Level
  • 12.3.2 Cracking at Silicon Film Level.
  • 12.4 Fatigue in Microsystems
  • 12.4.1 An Introduction to Fatigue in Mechanics
  • 12.4.2 Polysilicon Fatigue
  • 12.4.3 Fatigue in Metals at the Microscale
  • 12.4.4 Fatigue Testing at the Microscale
  • References
  • Chapter 13 Accidental Drop Impact
  • 13.1 Introduction
  • 13.2 Single‐Degree‐of‐Freedom Response to Drops
  • 13.3 Estimation of the Acceleration Peak Induced by an Accidental Drop
  • 13.4 A Multiscale Approach to Drop Impact Events
  • 13.4.1 Macroscale Level
  • 13.4.2 Mesoscale Level
  • 13.4.3 Microscale Level
  • 13.5 Results: Drop‐Induced Failure of Inertial MEMS
  • References
  • Chapter 14 Fabrication‐Induced Residual Stresses and Relevant Failures
  • 14.1 Main Sources of Residual Stresses in Microsystems
  • 14.2 The Stoney Formula and its Modifications
  • 14.3 Experimental Methods for the Evaluation of Residual Stresses
  • 14.4 Delamination, Buckling and Cracks in Thin Films due to Residual Stresses
  • References
  • Chapter 15 Damping in Microsystems
  • 15.1 Introduction
  • 15.2 Gas Damping in the Continuum Regime with Slip Boundary Conditions
  • 15.2.1 Experimental Validation at Ambient Pressure
  • 15.2.2 Effects of Decreasing Working Pressure
  • 15.3 Gas Damping in the Rarefied Regime
  • 15.3.1 Evaluation of Damping at Low Pressure using Kinetic Models
  • 15.3.2 Linearization of the BGK Model
  • 15.3.3 Numerical Implementation
  • 15.3.4 Application to MEMS
  • 15.4 Gas Damping in the Free‐Molecule Regime
  • 15.4.1 Boundary Integral Equation Approach
  • 15.4.2 Experimental Validations
  • 15.5 Solid Damping: Thermoelasticity
  • 15.6 Solid Damping: Anchor Losses
  • 15.6.1 Analytical Estimation of Dissipation
  • 15.6.1.1 Applications: Axial and Bending Modes
  • 15.6.2 Numerical Estimation of Anchor Losses
  • 15.7 Solid Damping: Additional unknown Sources
  • Surface Losses
  • 15.7.1 Solid Damping: Deviations from Thermoelasticity.