Cargando…

Mechanics of Microsystems.

Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems ta...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Corigliano, Alberto
Otros Autores: Ardito, Raffaele, Comi, Claudia, Frangi, Attilio, Ghisi, Aldo, Mariani, Stefano
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:Microsystem and Nanotechnology Series (ME20) Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1013819942
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 171202s2017 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d NLE  |d RECBK  |d YDX  |d OCLCQ  |d LVT  |d OCLCF  |d OCLCQ  |d UKMGB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBB7J2931  |2 bnb 
016 7 |a 018551253  |2 Uk 
019 |a 1013178593 
020 |a 9781119053804 
020 |a 1119053803 
020 |a 9781119053811  |q (ePub ebook) 
020 |a 1119053811 
020 |z 1119053838 
020 |z 9781119053835 
029 1 |a UKMGB  |b 018551253 
035 |a (OCoLC)1013819942  |z (OCoLC)1013178593 
037 |a 9781119053811  |b Wiley 
050 4 |a TK7875 .M434 2018 
082 0 4 |a 621.381 
049 |a UAMI 
100 1 |a Corigliano, Alberto. 
245 1 0 |a Mechanics of Microsystems. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2017. 
300 |a 1 online resource (432 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Microsystem and Nanotechnology Series (ME20) Ser. 
588 0 |a Print version record. 
520 |a Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems takes a mechanical approach to microsystems and covers fundamental concepts including MEMS design, modelling and reliability. The book examines the mechanical behaviour of microsystems from a 'design for reliability' point of view and includes examples of applications in industry. Mechanics of Microsystems is divided into two main parts. The first part recalls basic knowledge related to the microsystems behaviour and offers an overview on microsystems and fundamental design and modelling tools from a mechanical point of view, together with many practical examples of real microsystems. The second part covers the mechanical characterization of materials at the micro-scale and considers the most important reliability issues (fracture, fatigue, stiction, damping phenomena, etc) which are fundamental to fabricate a real working device. Key features: -Provides an overview of MEMS, with special focus on mechanical-based Microsystems and reliability issues.-Includes examples of applications in industry.-Accompanied by a website hosting supplementary material. The book provides essential reading for researchers and practitioners working with MEMS, as well as graduate students in mechanical, materials and electrical engineering. 
505 0 |a Cover -- Title Page -- Copyright -- Dedication -- Contents -- Series Preface -- Preface -- Acknowledgements -- Notation -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Microsystems -- 1.2 Microsystems Fabrication -- 1.3 Mechanics in Microsystems -- 1.4 Book Contents -- References -- Part I Fundamentals -- Chapter 2 Fundamentals of Mechanics and Coupled Problems -- 2.1 Introduction -- 2.2 Kinematics and Dynamics of Material Points and Rigid Bodies -- 2.2.1 Basic Notions of Kinematics and Motion Composition -- 2.2.1.1 Summary -- 2.2.2 Basic Notions of Dynamics and Relative Dynamics -- 2.2.2.1 Summary -- 2.2.3 One‐Degree‐of‐Freedom Oscillator -- 2.2.3.1 Summary -- 2.2.4 Rigid‐Body Kinematics and Dynamics -- 2.2.4.1 Rigid‐Body Kinematics -- 2.2.4.2 Rigid‐Body Dynamics -- 2.2.4.3 Summary -- 2.3 Solid Mechanics -- 2.3.1 Linear Elastic Problem for Deformable Solids -- 2.3.1.1 Linear Elastic Cubic Material -- 2.3.1.2 Linear Elastic Transversely Isotropic Material -- 2.3.1.3 Linear Elastic Orthotropic Material -- 2.3.1.4 Summary -- 2.3.2 Linear Elastic Problem for Beams -- 2.3.2.1 Examples -- 2.3.2.2 Summary -- 2.4 Fluid Mechanics -- 2.4.1 Navier-Stokes Equations -- 2.4.1.1 Newtonian Fluids -- 2.4.1.2 Incompressible Fluids -- 2.4.1.3 Perfect Fluids -- 2.4.1.4 Stokes Flow -- 2.4.1.5 Initial and Boundary Conditions -- 2.4.1.6 Summary -- 2.4.2 Fluid-Structure Interaction -- 2.5 Electrostatics and Electromechanics -- 2.5.1 Basic Notions of Electrostatics -- 2.5.1.1 Examples -- 2.5.1.2 Summary -- 2.5.2 Simple Electromechanical Problem -- 2.5.2.1 Static Equilibrium -- 2.5.2.2 Dynamic Response -- 2.5.2.3 Summary -- 2.5.3 General Electromechanical Coupled Problem -- 2.5.3.1 Summary -- 2.6 Piezoelectric Materials in Microsystems -- 2.6.1 Piezoelectric Materials -- 2.6.2 Piezoelectric Modelling -- 2.6.2.1 Summary. 
505 8 |a 2.7 Heat Conduction and Thermomechanics -- 2.7.1 Heat Problem -- 2.7.1.1 Example: Unidimensional Thermal Problem -- 2.7.1.2 Summary -- 2.7.2 Thermomechanical Coupled Problem -- 2.7.2.1 Summary -- References -- Chapter 3 Modelling of Linear and Nonlinear Mechanical Response -- 3.1 Introduction -- 3.2 Fundamental Principles -- 3.2.1 Principle of Virtual Power -- 3.2.2 Total Potential Energy Principle -- 3.2.3 Hamilton's Principle -- 3.2.4 Specialization of the Principle of Virtual Powers to Beams -- 3.3 Approximation Techniques and Weighted Residuals Approach -- 3.4 Exact and Approximate Solutions for Dynamic Problems -- 3.4.1 Free Flexural Linear Vibrations of a Single‐span Beam -- 3.4.2 Nonlinear Vibration of an Axially Loaded Beam -- 3.5 Example of Application: Bistable Elements -- References -- Part II Devices -- Chapter 4 Accelerometers -- 4.1 Introduction -- 4.2 Capacitive Accelerometers -- 4.2.1 In‐Plane Sensing -- 4.2.2 Out‐of‐Plane Sensing -- 4.3 Resonant Accelerometers -- 4.3.1 Resonating Proof Mass -- 4.3.2 Resonating Elements Coupled to the Proof Mass -- 4.4 Examples -- 4.4.1 Three‐Axis Capacitive Accelerometer -- 4.4.2 Out‐of‐Plane Resonant Accelerometer -- 4.4.3 In‐Plane Resonant Accelerometer -- 4.5 Design Problems and Reliability Issues -- References -- Chapter 5 Coriolis‐Based Gyroscopes -- 5.1 Introduction -- 5.2 Basic Working Principle -- 5.2.1 Sensitivity of Coriolis Vibratory Gyroscopes -- 5.3 Lumped‐Mass Gyroscopes -- 5.3.1 Symmetric and Decoupled Gyroscope -- 5.3.2 Tuning‐Fork Gyroscope -- 5.3.3 Three‐Axis Gyroscope -- 5.3.4 Gyroscopes with Resonant Sensing -- 5.4 Disc and Ring Gyroscopes -- 5.5 Design Problems and Reliability Issues -- References -- Chapter 6 Resonators -- 6.1 Introduction -- 6.2 Electrostatically Actuated Resonators -- 6.3 Piezoelectric Resonators -- 6.4 Nonlinearity Issues -- References. 
505 8 |a Chapter 7 Micromirrors and Parametric Resonance -- 7.1 Introduction -- 7.2 Electrostatic Resonant Micromirror -- 7.2.1 Numerical Simulations with a Continuation Approach -- 7.2.1.1 Computation of the Electrostatic Torque and its Derivative via Direct Finite Element Method -- 7.2.2 Experimental Set‐Up -- 7.2.2.1 Sinusoidal Excitation -- 7.2.2.2 Square Wave Excitation -- References -- Chapter 8 Vibrating Lorentz Force Magnetometers -- 8.1 Introduction -- 8.2 Vibrating Lorentz Force Magnetometers -- 8.2.1 Classical Devices -- 8.2.2 Improved Design -- 8.2.3 Further Improvements -- 8.3 Topology or Geometry Optimization -- References -- Chapter 9 Mechanical Energy Harvesters -- 9.1 Introduction -- 9.2 Inertial Energy Harvesters -- 9.2.1 Classification of Resonant Energy Harvesters -- 9.2.2 Mechanical Model of a Simple Piezoelectric Harvester -- 9.2.2.1 Piezoelectric Constitutive Law for Beams -- 9.2.2.2 The Principle of Virtual Power for a Piezoelectric Cantilever Beam -- 9.2.2.3 Governing Equations via the Weighted Residuals Approach -- 9.2.2.4 Solution in the Frequency Domain -- 9.3 Frequency Upconversion and Bistability -- 9.4 Fluid-Structure Interaction Energy Harvesters -- 9.4.1 Synopsis of Aeroelastic Phenomena -- 9.4.1.1 Vortex‐Induced Vibration -- 9.4.1.2 Flutter Instability -- 9.4.2 Energy Harvesting through Vortex‐Induced Vibration -- 9.4.3 Energy Harvesting through Flutter Instability -- References -- Chapter 10 Micropumps -- 10.1 Introduction -- 10.2 Modelling Issues for Diaphragm Micropumps -- 10.3 Modelling of Electrostatic Actuator -- 10.3.1 Simplified Electromechanical Model -- 10.3.1.1 The Principle of Virtual Work for an Axisymmetric Plate -- 10.3.1.2 Electrostatic Forces -- 10.3.1.3 Governing Equations via the Weighted Residuals Approach -- 10.3.2 Reliability Issues -- 10.3.2.1 Electrostatic Pull‐In -- 10.3.2.2 Adhesion. 
505 8 |a 10.3.2.3 Actuator Control -- 10.4 Multiphysics Model of an Electrostatic Micropump -- 10.5 Piezoelectric Micropumps -- 10.5.1 Modelling of the Actuator -- 10.5.2 Complete Multiphysics Model -- References -- Part III Reliability and Dissipative Phenomena -- Chapter 11 Mechanical Characterization at the Microscale -- 11.1 Introduction -- 11.2 Mechanical Characterization of Polysilicon as a Structural Material for Microsystems -- 11.2.1 Polysilicon as a Structural Material for Microsystems -- 11.2.2 Testing Methodologies -- 11.2.3 Quasi‐Static Testing -- 11.2.3.1 Off‐Chip Tension Test -- 11.2.3.2 Off‐Chip and On‐Chip Bending Test -- 11.2.3.3 Test on Membranes (Bulge Test) -- 11.2.3.4 Nanoindenter‐Driven Test -- 11.2.4 High‐Frequency Testing -- 11.2.4.1 Fatigue Mechanisms -- 11.3 Weibull Approach -- 11.4 On‐Chip Testing Methodology for Experimental Determination of Elastic Stiffness and Nominal Strength -- 11.4.1 On‐Chip Bending Test through a Comb‐Finger Rotational Electrostatic Actuator -- 11.4.1.1 General Description -- 11.4.1.2 Data Reduction Procedure -- 11.4.1.3 Experimental Results -- 11.4.2 On‐Chip Bending Test through a Parallel‐Plate Electrostatic Actuator -- 11.4.2.1 General Description -- 11.4.2.2 Data Reduction Procedure -- 11.4.2.3 Experimental Results -- 11.4.3 On‐Chip Tensile Test through an Electrothermomechanical Actuator -- 11.4.3.1 General Description -- 11.4.3.2 Data Reduction Procedure -- 11.4.3.3 Experimental Results -- 11.4.4 On‐Chip Test for Thick Polysilicon Films -- 11.4.4.1 General Description -- 11.4.4.2 Data Reduction Procedure -- 11.4.4.3 Experimental Results -- References -- Chapter 12 Fracture and Fatigue in Microsystems -- 12.1 Introduction -- 12.2 Fracture Mechanics: An Overview -- 12.3 MEMS Failure Modes due to Cracking -- 12.3.1 Cracking and Delamination at Package Level -- 12.3.2 Cracking at Silicon Film Level. 
505 8 |a 12.4 Fatigue in Microsystems -- 12.4.1 An Introduction to Fatigue in Mechanics -- 12.4.2 Polysilicon Fatigue -- 12.4.3 Fatigue in Metals at the Microscale -- 12.4.4 Fatigue Testing at the Microscale -- References -- Chapter 13 Accidental Drop Impact -- 13.1 Introduction -- 13.2 Single‐Degree‐of‐Freedom Response to Drops -- 13.3 Estimation of the Acceleration Peak Induced by an Accidental Drop -- 13.4 A Multiscale Approach to Drop Impact Events -- 13.4.1 Macroscale Level -- 13.4.2 Mesoscale Level -- 13.4.3 Microscale Level -- 13.5 Results: Drop‐Induced Failure of Inertial MEMS -- References -- Chapter 14 Fabrication‐Induced Residual Stresses and Relevant Failures -- 14.1 Main Sources of Residual Stresses in Microsystems -- 14.2 The Stoney Formula and its Modifications -- 14.3 Experimental Methods for the Evaluation of Residual Stresses -- 14.4 Delamination, Buckling and Cracks in Thin Films due to Residual Stresses -- References -- Chapter 15 Damping in Microsystems -- 15.1 Introduction -- 15.2 Gas Damping in the Continuum Regime with Slip Boundary Conditions -- 15.2.1 Experimental Validation at Ambient Pressure -- 15.2.2 Effects of Decreasing Working Pressure -- 15.3 Gas Damping in the Rarefied Regime -- 15.3.1 Evaluation of Damping at Low Pressure using Kinetic Models -- 15.3.2 Linearization of the BGK Model -- 15.3.3 Numerical Implementation -- 15.3.4 Application to MEMS -- 15.4 Gas Damping in the Free‐Molecule Regime -- 15.4.1 Boundary Integral Equation Approach -- 15.4.2 Experimental Validations -- 15.5 Solid Damping: Thermoelasticity -- 15.6 Solid Damping: Anchor Losses -- 15.6.1 Analytical Estimation of Dissipation -- 15.6.1.1 Applications: Axial and Bending Modes -- 15.6.2 Numerical Estimation of Anchor Losses -- 15.7 Solid Damping: Additional unknown Sources -- Surface Losses -- 15.7.1 Solid Damping: Deviations from Thermoelasticity. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Microelectromechanical systems. 
650 2 |a Micro-Electrical-Mechanical Systems 
650 6 |a Microsystèmes électromécaniques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Microelectromechanical systems  |2 fast 
700 1 |a Ardito, Raffaele. 
700 1 |a Comi, Claudia. 
700 1 |a Frangi, Attilio. 
700 1 |a Ghisi, Aldo. 
700 1 |a Mariani, Stefano. 
776 0 8 |i Print version:  |a Corigliano, Alberto.  |t Mechanics of Microsystems.  |d Newark : John Wiley & Sons, Incorporated, ©2017  |z 9781119053835 
830 0 |a Microsystem and Nanotechnology Series (ME20) Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5155739  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5155739 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00717958 
938 |a YBP Library Services  |b YANK  |n 15003305 
938 |a YBP Library Services  |b YANK  |n 15204477 
994 |a 92  |b IZTAP