Stochastic Finite Element Methods : an Introduction.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing,
2017.
|
Colección: | Mathematical engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Acknowledgements
- Contents
- List of Figures
- List of Tables
- 1 Stochastic Processes
- 1.1 Moments of Random Processes
- 1.1.1 Autocorrelation and Autocovariance Function
- 1.1.2 Stationary Stochastic Processes
- 1.1.3 Ergodic Stochastic Processes
- 1.2 Fourier Integrals and Transforms
- 1.2.1 Power Spectral Density Function
- 1.2.2 The Fourier Transform of the Autocorrelation Function
- 1.3 Common Stochastic Processes
- 1.3.1 Gaussian Processes
- 1.3.2 Markov Processes
- 1.3.3 Brownian Process
- 1.3.4 Stationary White Noise
- 1.3.5 Random Variable Case1.3.6 Narrow and Wideband Random Processes
- 1.3.7 Kanai
- Tajimi Power Spectrum
- 1.4 Solved Numerical Examples
- 1.5 Exercises
- 2 Representation of a Stochastic Process
- 2.1 Point Discretization Methods
- 2.1.1 Midpoint Method
- 2.1.2 Integration Point Method
- 2.1.3 Average Discretization Method
- 2.1.4 Interpolation Method
- 2.2 Series Expansion Methods
- 2.2.1 The Karhunen
- LoÃv̈e Expansion
- 2.2.2 Spectral Representation Method
- 2.2.3 Simulation Formula for Stationary Stochastic Fields
- 2.3 Non-Gaussian Stochastic Processes2.4 Solved Numerical Examples
- 2.5 Exercises
- 3 Stochastic Finite Element Method
- 3.1 Stochastic Principle of Virtual Work
- 3.2 Nonintrusive Monte Carlo Simulation
- 3.2.1 Neumann Series Expansion Method
- 3.2.2 The Weighted Integral Method
- 3.3 Perturbation-Taylor Series Expansion Method
- 3.4 Intrusive Spectral Stochastic Finite Element Method (SSFEM)
- 3.4.1 Homogeneous Chaos
- 3.4.2 Galerkin Minimization
- 3.5 Closed Forms and Analytical Solutions with Variability Response Functions (VRFs)
- 3.5.1 Exact VRF for Statically Determinate Beams3.5.2 VRF Approximation for General Stochastic FEM Systems
- 3.5.3 Fast Monte Carlo Simulation
- 3.5.4 Extension to Two-Dimensional FEM Problems
- 3.6 Solved Numerical Examples
- 3.7 Exercises
- 4 Reliability Analysis
- 4.1 Definition
- 4.1.1 Linear Limit-State Functions
- 4.1.2 Nonlinear Limit-State Functions
- 4.1.3 First- and Second-Order Approximation Methods
- 4.2 Monte Carlo Simulation (MCS)
- 4.2.1 The Law of Large Numbers
- 4.2.2 Random Number Generators
- 4.2.3 Crude Monte Carlo Simulation
- 4.3 Variance Reduction Methods4.3.1 Importance Sampling
- 4.3.2 Latin Hypercube Sampling (LHS)
- 4.4 Monte Carlo Methods in Reliability Analysis
- 4.4.1 Crude Monte Carlo Simulation
- 4.4.2 Importance Sampling
- 4.4.3 The Subset Simulation (SS)
- 4.5 Artificial Neural Networks (ANN)
- 4.5.1 Structure of an Artificial Neuron
- 4.5.2 Architecture of Neural Networks
- 4.5.3 Training of Neural Networks
- 4.5.4 ANN in the Framework of Reliability Analysis
- 4.6 Numerical Examples
- 4.7 Exercises
- Appendix A Probability Theory