Cargando…

Stochastic Finite Element Methods : an Introduction.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Papadopoulos, Vissarion
Otros Autores: Giovanis, Dimitris G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing, 2017.
Colección:Mathematical engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1012883412
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 171125s2017 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d REDDC  |d OCLCF  |d OCLCO 
019 |a 1008986697 
020 |a 9783319645285 
020 |a 3319645285 
020 |z 9783319645278 
020 |z 3319645277 
035 |a (OCoLC)1012883412  |z (OCoLC)1008986697 
050 4 |a TA1-2040 
082 0 4 |a 620 
049 |a UAMI 
100 1 |a Papadopoulos, Vissarion. 
245 1 0 |a Stochastic Finite Element Methods :  |b an Introduction. 
260 |a Cham :  |b Springer International Publishing,  |c 2017. 
300 |a 1 online resource (151 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematical Engineering 
588 0 |a Print version record. 
505 0 |a Preface -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Stochastic Processes -- 1.1 Moments of Random Processes -- 1.1.1 Autocorrelation and Autocovariance Function -- 1.1.2 Stationary Stochastic Processes -- 1.1.3 Ergodic Stochastic Processes -- 1.2 Fourier Integrals and Transforms -- 1.2.1 Power Spectral Density Function -- 1.2.2 The Fourier Transform of the Autocorrelation Function -- 1.3 Common Stochastic Processes -- 1.3.1 Gaussian Processes -- 1.3.2 Markov Processes -- 1.3.3 Brownian Process -- 1.3.4 Stationary White Noise 
505 8 |a 1.3.5 Random Variable Case1.3.6 Narrow and Wideband Random Processes -- 1.3.7 Kanai -- Tajimi Power Spectrum -- 1.4 Solved Numerical Examples -- 1.5 Exercises -- 2 Representation of a Stochastic Process -- 2.1 Point Discretization Methods -- 2.1.1 Midpoint Method -- 2.1.2 Integration Point Method -- 2.1.3 Average Discretization Method -- 2.1.4 Interpolation Method -- 2.2 Series Expansion Methods -- 2.2.1 The Karhunen -- LoÃv̈e Expansion -- 2.2.2 Spectral Representation Method -- 2.2.3 Simulation Formula for Stationary Stochastic Fields 
505 8 |a 2.3 Non-Gaussian Stochastic Processes2.4 Solved Numerical Examples -- 2.5 Exercises -- 3 Stochastic Finite Element Method -- 3.1 Stochastic Principle of Virtual Work -- 3.2 Nonintrusive Monte Carlo Simulation -- 3.2.1 Neumann Series Expansion Method -- 3.2.2 The Weighted Integral Method -- 3.3 Perturbation-Taylor Series Expansion Method -- 3.4 Intrusive Spectral Stochastic Finite Element Method (SSFEM) -- 3.4.1 Homogeneous Chaos -- 3.4.2 Galerkin Minimization -- 3.5 Closed Forms and Analytical Solutions with Variability Response Functions (VRFs) 
505 8 |a 3.5.1 Exact VRF for Statically Determinate Beams3.5.2 VRF Approximation for General Stochastic FEM Systems -- 3.5.3 Fast Monte Carlo Simulation -- 3.5.4 Extension to Two-Dimensional FEM Problems -- 3.6 Solved Numerical Examples -- 3.7 Exercises -- 4 Reliability Analysis -- 4.1 Definition -- 4.1.1 Linear Limit-State Functions -- 4.1.2 Nonlinear Limit-State Functions -- 4.1.3 First- and Second-Order Approximation Methods -- 4.2 Monte Carlo Simulation (MCS) -- 4.2.1 The Law of Large Numbers -- 4.2.2 Random Number Generators -- 4.2.3 Crude Monte Carlo Simulation 
505 8 |a 4.3 Variance Reduction Methods4.3.1 Importance Sampling -- 4.3.2 Latin Hypercube Sampling (LHS) -- 4.4 Monte Carlo Methods in Reliability Analysis -- 4.4.1 Crude Monte Carlo Simulation -- 4.4.2 Importance Sampling -- 4.4.3 The Subset Simulation (SS) -- 4.5 Artificial Neural Networks (ANN) -- 4.5.1 Structure of an Artificial Neuron -- 4.5.2 Architecture of Neural Networks -- 4.5.3 Training of Neural Networks -- 4.5.4 ANN in the Framework of Reliability Analysis -- 4.6 Numerical Examples -- 4.7 Exercises -- Appendix A Probability Theory 
500 |a ""A.1 Axiomatic Probability Theory"" 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Finite element method. 
650 0 |a Stochastic models. 
650 6 |a Méthode des éléments finis. 
650 6 |a Modèles stochastiques. 
650 7 |a Finite element method  |2 fast 
650 7 |a Stochastic models  |2 fast 
700 1 |a Giovanis, Dimitris G. 
776 0 8 |i Print version:  |a Papadopoulos, Vissarion.  |t Stochastic Finite Element Methods : An Introduction.  |d Cham : Springer International Publishing, ©2017  |z 9783319645278 
830 0 |a Mathematical engineering. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5116570  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33856870 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5116570 
938 |a YBP Library Services  |b YANK  |n 14948061 
994 |a 92  |b IZTAP