Occupancy Estimation and Modeling : Inferring Patterns and Dynamics of Species Occurrence.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier Science,
2005.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Occupancy Estimation and Modeling
- Copyright
- Contents
- Preface
- Acknowledgments
- Part I Background and Concepts
- 1 Introduction
- 1.1 Operational De nitions
- 1.2 Sampling Animal Populations and Communities: General Principles
- 1.2.1 Why?
- 1.2.2 What?
- 1.2.3 How?
- 1.3 Inference About Dynamics and Causation
- 1.3.1 Generation of System Dynamics
- 1.3.2 Statics and Process vs. Pattern
- 1.4 Discussion
- 2 Occupancy Applications
- 2.1 Geographic Range
- 2.2 Habitat Relationships and Resource Selection
- 2.3 Metapopulation Dynamics2.3.1 Inference Based on Single-Season Data
- 2.3.2 Inference Based on Multiple-Season Data
- 2.4 Large-Scale Monitoring
- 2.5 Multi-Species Occupancy Data
- 2.5.1 Inference Based on Static Occupancy Patterns
- 2.5.2 Inference Based on Occupancy Dynamics
- 2.6 Paleobiology
- 2.7 Disease Dynamics
- 2.8 Non-Ecological Applications
- 2.9 Discussion
- 3 Fundamental Principals of Statistical Inference
- 3.1 De nitions and Key Concepts
- 3.1.1 Random Variables, Probability Distributions, and the Likelihood Function
- 3.1.2 Expected Values and Variance3.1.3 Introduction to Methods of Estimation
- 3.1.4 Properties of Point Estimators
- Bias
- Precision (Variance and Standard Error)
- Accuracy (Mean Squared Error)
- 3.1.5 Computer Intensive Methods
- 3.2 Maximum Likelihood Estimation Methods
- 3.2.1 Maximum Likelihood Estimators
- 3.2.2 Properties of Maximum Likelihood Estimators
- 3.2.3 Variance, Covariance (and Standard Error) Estimation
- 3.2.4 Con dence Interval Estimators
- 3.2.5 Multiple Maxima
- 3.2.6 Observed and Complete Data Likelihood
- 3.3 Bayesian Estimation3.3.1 Theory
- 3.3.2 Computing Methods
- 3.4 Modeling Predictor Variables
- 3.4.1 The Logit Link Function
- 3.4.2 Interpretation
- 3.4.3 Estimation
- 3.5 Hypothesis Testing
- 3.5.1 Background and De nitions
- 3.5.2 Likelihood Ratio Tests
- 3.5.3 Goodness of Fit Tests
- 3.6 Model Selection
- 3.6.1 Akaike's Information Criterion (AIC)
- 3.6.2 Goodness of Fit and Overdispersion
- 3.6.3 Quasi-AIC
- 3.6.4 Model Averaging and Model Selection Uncertainty
- 3.6.5 Bayesian Assessment of Model Fit
- 3.6.6 Bayesian Model Selection3.7 Discussion
- Part II Single-Species, Single-Season Occupancy Models
- 4 Basic Presence/Absence Situation
- 4.1 The Sampling Situation
- 4.2 Estimation of Occupancy if Probability of Detection Is 1 or Known Without Error
- 4.3 Two-Step Ad Hoc Approaches
- 4.3.1 Geissler-Fuller Method
- 4.3.2 Azuma-Baldwin-Noon Method
- 4.3.3 Nichols-Karanth Method
- 4.4 Model-Based Approach
- 4.4.1 Building a Model
- Observed Data Likelihood
- Complete Data Likelihood
- 4.4.2 Estimation