Sustainable and green electrochemical science and technology /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley Blackwell,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgement
- Chapter 1 Introduction to Electrochemical Sustainable Processes
- 1.1 Introduction
- 1.2 Effluent Treatment and Recycling
- 1.3 Green Electrochemistry
- 1.4 Electrochemistry and Energy Sustainability
- 1.5 Hydrogen Economy and Fuel Cells
- 1.5.1 The Hydrogen Economy
- 1.5.1.1 Hydrogen Generation, Storage and Use
- 1.5.2 Fuel Cells
- 1.6 Conclusions
- References
- Chapter 2 Electrochemistry, Electrocatalysis and Thermodynamics
- 2.1 The Electrochemical Cell
- 2.1.1 Faraday's Law
- 2.2 Electrochemical Thermodynamics
- 2.2.1 Gibbs Free Energy
- 2.2.2 Free Energy and Equilibrium Constants
- 2.2.3 Free Energy and Cell Potentials
- 2.2.3.1 Cell Potential versus pH Diagrams
- 2.3 Types of Electrochemical Reactions
- 2.3.1 Electric Double Layer
- 2.3.2 Electrochemical Reaction
- 2.3.3 Electrochemical Kinetics
- 2.3.3.1 Activation Energy for Electron Transfer
- 2.3.4 A Model of Electrode Kinetics
- 2.3.4.1 Experimental Behaviour
- 2.3.4.2 The Generalized Butler-Volmer Equation
- 2.4 Mass Transport and Electrochemical Reactions
- 2.4.1 Electrode Kinetics and Mass Transport
- 2.4.2 Butler-Volmer Equations and Departure from Equilibrium Potentials
- 2.4.3 Multistep Reactions
- 2.4.4 The Role of Adsorption
- 2.4.5 The Hydrogen Electrode and Oxygen Electrode Reactions
- 2.4.5.1 Hydrogen Oxidation and Evolution
- 2.4.5.2 The Oxygen Electrode
- 2.4.6 Voltammetry and the Platinum Electrode
- 2.4.6.1 Cyclic Voltammetry
- 2.4.7 Rotating Disc Electrode
- 2.4.7.1 Koutecky-Levich Analysis
- 2.4.8 Rotating Ring Disc Electrode
- 2.5 Photoelectrochemistry
- 2.5.1 Semiconductors and Light Absorption
- 2.5.2 Electron Transfer at Semiconductor Electrodes
- 2.5.3 Current-Potential Relations
- 2.6 Electrochemical Impedance Spectroscopy.
- 2.6.1 Polarization Resistance
- 2.6.2 Warburg Impedance
- References
- Chapter 3 Electrochemical Cells, Materials and Reactors
- 3.1 Electrochemical Reactors
- 3.1.1 Current Efficiency
- 3.1.2 Production Rates
- 3.1.3 Energy Requirements
- 3.1.3.1 Cell Voltage
- 3.1.4 Energy Requirements and Efficiency in Hydrogen Production
- 3.1.4.1 Thermodynamics of Steam Electrolysis
- 3.1.4.2 Efficiency of Water Splitting to Hydrogen
- 3.2 Fuel Cells
- 3.2.1 Fuel Cell Efficiency
- 3.2.2 Practical Efficiencies
- 3.2.3 Fuel Cell Voltage
- 3.2.4 Mass Transport and Concentration Effects
- 3.2.5 Fuel and Oxidant Crossover
- 3.2.6 Figures of Merit
- 3.3 Batteries
- 3.3.1 C-Rate
- 3.4 Capacitors
- 3.4.1 Asymmetric Supercapacitors
- 3.5 Electrochemical Cell Engineering
- 3.5.1 Cell Designs
- 3.5.1.1 Temperature Control
- 3.5.1.2 The Distribution of Power and Current
- 3.5.2 Three-Dimensional Electrodes
- 3.5.3 Cell Components and Materials
- 3.5.3.1 Electrode Materials
- 3.5.3.2 Electrodes
- 3.5.3.3 Cell Membranes
- 3.5.3.4 Ion-Exchange Membranes
- 3.5.3.5 Species Transport in Membranes and Diaphragms
- 3.5.3.6 The Transport Number
- 3.5.3.7 Transport Processes in Diaphragms
- 3.5.3.8 Membranes and the Transport of Ions
- References
- Chapter 4 Carbon Dioxide Reduction and Electro-Organic Synthesis
- 4.1 Electrochemical Reduction of Carbon Dioxide
- 4.1.1 Technological Applications
- 4.1.1.1 Commercial Outlook
- 4.1.2 High Temperature Carbon Dioxide Electrolysis
- 4.1.3 Carbon Capture
- 4.1.4 Photoelectrochemical Reduction of Carbon Dioxide
- 4.1.5 Biological Electrochemical Reduction Processes
- 4.1.5.1 Bacteria and Enzyme Photocathodes for Carbon Dioxide Reduction
- 4.2 Organic Synthesis
- 4.2.1 Electro-Organic Syntheses
- 4.2.2 Electrosynthesis of Adiponitrile
- 4.3 Green Electro-Organic Synthesis.
- 4.3.1 Ionic Liquids
- 4.3.2 Paired Electro-Organic Synthesis
- 4.4 Conclusions
- References
- Chapter 5 Hydrogen Production and Water Electrolysis
- 5.1 Fossil Fuel Based Hydrogen Production
- 5.2 Hydrogen via Electrolysis
- 5.2.1 Alkaline Electrolysers
- 5.2.1.1 Electrolyser Types and Materials
- 5.2.1.2 Electrode Materials
- 5.2.2 Solid Polymer Electrolyte Water Electrolysis
- 5.2.2.1 The Membrane Electrolyte
- 5.2.3 Electrocatalysts
- 5.2.3.1 Hydrogen Evolution
- 5.2.3.2 Oxygen Evolution
- 5.2.3.3 Catalyst Preparation
- 5.2.4 Production Rates and Energy Requirements in Water Electrolysis
- 5.2.5 Alkaline Polymer Electrolytes
- 5.2.6 High-Temperature Electrolysis of Steam
- 5.2.7 Electrolysis Using Organic Fuels
- 5.2.7.1 Electrolysis of Alcohols
- 5.2.8 Electrolytic Oxygen Generation
- 5.2.8.1 Electrochemical Air Purification
- 5.3 Photoelectrolysis
- 5.3.1 Photocatalysts
- 5.3.1.1 Dye-Sensitized Solar Cells
- 5.3.2 Photocathodes and Tandem Cells
- 5.4 Thermal and Electrochemical Generation of Hydrogen from Water
- 5.4.1 Thermochemical Hydrogen Production
- 5.4.2 Electrolysis and Thermochemical Cycles
- 5.4.2.1 Calcium-Bromine Cycle
- 5.4.2.2 Sulfur-Hydrogen Cycle
- 5.4.2.3 Sulfur-Bromine Cycle
- 5.4.2.4 Photoelectrocatalytic Process
- 5.4.2.5 Low Temperature Thermochemical Cycle
- 5.5 Chemical Production of Hydrogen
- 5.6 Conclusions
- References
- Chapter 6 Inorganic Synthesis
- 6.1 Chemicals from the Electrolysis of Halides
- 6.1.1 The Reaction Chemistry for the Chlorine
- 6.1.2 Chlorine and Sodium Hydroxide Production: The Chlor-Alkali Industry
- 6.1.2.1 Membrane Cells
- 6.1.2.2 Diaphragm Cells
- 6.1.2.3 Mercury Cells
- 6.1.2.4 Oxygen Cathodes
- 6.1.3 Hydrochloric Acid Electrolysis
- 6.1.4 Fluorine
- 6.1.5 Hypochlorite and Chlorate
- 6.1.6 Perchlorate and Perchloric Acid.
- 6.1.7 Bromate, Iodate and Periodate
- 6.2 Electrolytic Processes for Metal Processing
- 6.2.1 Electrowinning
- 6.2.1.1 Aqueous Electrolytes
- 6.2.2 Molten Salt Electrolytes
- 6.2.2.1 Aluminium Production
- 6.2.3 Ionic Liquid Electrolytes
- 6.3 Inorganic Compounds and Salts
- 6.3.1 Peroxidisulfate Electrosynthesis
- 6.3.2 Permanganate
- 6.4 Generation of Chemical Oxidants
- 6.4.1 Hydrogen Peroxide
- 6.4.1.1 Electrochemistry of Hydrogen Peroxide Synthesis
- 6.4.1.2 Commercial Development
- 6.4.2 Ozone
- 6.4.2.1 Ozone Production from Water Electrolysis
- 6.5 Conclusions
- References
- Chapter 7 Electrochemical Energy Storage and Power Sources
- 7.1 Batteries
- 7.1.1 Secondary Batteries
- 7.1.1.1 Ragone Plots
- 7.1.2 Types of Batteries
- 7.1.3 Lithium-Ion Batteries
- 7.1.4 Molten Salt Batteries
- 7.1.5 Metal-Air Batteries
- 7.1.5.1 Zinc-Air Battery
- 7.1.5.2 Lithium-Air Battery
- 7.1.5.3 Aprotic Solvent Rechargeable Li-Air Battery
- 7.1.5.4 Solid-State Li-Air Battery
- 7.1.5.5 Mixed Aqueous/Aprotic
- 7.1.5.6 Other Non-Aqueous Metal-Air Batteries
- 7.1.5.7 Sodium-Air Batteries
- 7.1.5.8 Other Battery Development
- 7.1.6 Redox Flow Batteries
- 7.1.6.1 Redox Battery Systems
- 7.1.6.2 All-Vanadium Redox Flow Cell
- 7.1.6.3 Vanadium-Chloride/Polyhalide Redox Flow Cell
- 7.1.6.4 Polysulfide-Bromide Fuel Cell
- 7.1.6.5 Vanadium-Cerium Redox Flow Cell
- 7.1.7 Carbon-Air Batteries
- 7.1.7.1 Direct Carbon-Air Fuel Cell Reactions
- 7.1.7.2 Direct Carbon Fuel Cell Technology Based on Metal Hydroxide Electrolyte
- 7.1.8 Borohydride Cells
- 7.1.8.1 Hydrogen Peroxide Oxidant
- 7.2 Supercapacitors
- 7.2.1 Electrolytes for Supercapacitors
- 7.2.2 Hybrid or Asymmeytric Supercapacitors
- 7.2.2.1 Gel Polymer Electrolytes
- 7.3 Biological Fuel Cells
- 7.3.1 Microbial Fuel Cells.
- 7.3.1.1 Measuring Microbial Fuel Cell Performance
- 7.3.1.2 Performance of a Microbial Fuel Cell
- 7.3.1.3 Membranes for Microbial Fuel Cells
- 7.3.1.4 Applications of Microbial Fuel Cells
- 7.3.1.5 Treatment of Biodegradable Organic Matter
- 7.3.2 Enzymatic Fuel Cells
- 7.3.2.1 Mediated Electron-Transfer
- 7.3.2.2 Enzymes for Cathodic Reactions in Biological Fuel Cells
- References
- Chapter 8 Electrochemical Energy Systems and Power Sources: Fuel Cells
- 8.1 Introduction
- 8.2 Principle of Fuel Cell Operation
- 8.3 Fuel Cell Systems
- 8.3.1 Cell Stacking
- 8.3.2 Fuel Cell Balance of Plant
- 8.4 Polymer Electrolyte Membrane Fuel Cells
- 8.4.1 Polymer Electrolyte Membrane Fuel Cell structure
- 8.4.2 Gas Diffusion Layer
- 8.4.3 Water Management
- 8.4.4 Catalysts
- 8.4.5 Membrane Materials
- 8.4.6 Material Issues in Polymer Electrolyte Membrane Fuel Cells
- 8.4.7 Polymer Electrolyte Membrane Fuel Cell Performance
- 8.4.8 Higher Temperature Membranes
- 8.4.9 Membranes with Heteropolyacids
- 8.4.9.1 Pyrophosphates
- 8.4.9.2 Solid Acids
- 8.4.10 Alkaline Anion-Exchange Membranes
- 8.5 Alkaline Fuel Cells
- 8.5.1 Cell Components
- 8.5.1.1 Gas Diffusion Electrodes
- 8.5.1.2 Commercial Development
- 8.6 Medium and High Temperature Fuel Cells
- 8.6.1 Phosphoric Acid Fuel Cell
- 8.6.1.1 Cell Components
- 8.6.1.2 Bipolar Plates
- 8.6.1.3 Performance
- 8.6.2 Molten Carbonate Fuel Cell
- 8.6.2.1 Cell Components
- 8.6.2.2 Performance
- 8.6.2.3 Internal Reforming Molten Carbonate Fuel Cell
- 8.6.2.4 Degradation
- 8.6.2.5 Commercial Plants
- 8.6.3 Solid Oxide Fuel Cells
- 8.6.3.1 Cell Components
- 8.6.3.2 Cell and Stack Designs
- 8.6.3.3 Performance
- 8.6.4 Proton Conducting Ceramic Fuel Cells
- 8.7 Direct Alcohol Fuel Cells
- 8.7.1 Introduction
- 8.7.2 Anodic Oxidation of Methanol.