|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1010943435 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
170616t20172017nju ob 001 0 eng |
040 |
|
|
|a AU@
|b eng
|e rda
|e pn
|c AU@
|d OCLCO
|d OCLCF
|d OCLCQ
|d YDX
|d EBLCP
|d AU@
|d UKAHL
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 987809333
|a 988174765
|a 995757317
|
020 |
|
|
|a 9781118698082
|q (e-book)
|
020 |
|
|
|a 1118698088
|q (e-book)
|
020 |
|
|
|z 9781119972440
|
020 |
|
|
|z 1119972442
|
029 |
0 |
|
|a AU@
|b 000061011139
|
029 |
1 |
|
|a AU@
|b 000062359809
|
035 |
|
|
|a (OCoLC)1010943435
|z (OCoLC)987809333
|z (OCoLC)988174765
|z (OCoLC)995757317
|
050 |
|
4 |
|a QD551
|b .S38 2017
|
082 |
0 |
4 |
|a 541/.37
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Scott, K.
|q (Keith),
|d 1951-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjJypyXhF8PQwqjm4Txj3P
|
245 |
1 |
0 |
|a Sustainable and green electrochemical science and technology /
|c Keith Scott.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley Blackwell,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (411 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgement -- Chapter 1 Introduction to Electrochemical Sustainable Processes -- 1.1 Introduction -- 1.2 Effluent Treatment and Recycling -- 1.3 Green Electrochemistry -- 1.4 Electrochemistry and Energy Sustainability -- 1.5 Hydrogen Economy and Fuel Cells -- 1.5.1 The Hydrogen Economy -- 1.5.1.1 Hydrogen Generation, Storage and Use -- 1.5.2 Fuel Cells -- 1.6 Conclusions -- References -- Chapter 2 Electrochemistry, Electrocatalysis and Thermodynamics -- 2.1 The Electrochemical Cell -- 2.1.1 Faraday's Law -- 2.2 Electrochemical Thermodynamics -- 2.2.1 Gibbs Free Energy -- 2.2.2 Free Energy and Equilibrium Constants -- 2.2.3 Free Energy and Cell Potentials -- 2.2.3.1 Cell Potential versus pH Diagrams -- 2.3 Types of Electrochemical Reactions -- 2.3.1 Electric Double Layer -- 2.3.2 Electrochemical Reaction -- 2.3.3 Electrochemical Kinetics -- 2.3.3.1 Activation Energy for Electron Transfer -- 2.3.4 A Model of Electrode Kinetics -- 2.3.4.1 Experimental Behaviour -- 2.3.4.2 The Generalized Butler-Volmer Equation -- 2.4 Mass Transport and Electrochemical Reactions -- 2.4.1 Electrode Kinetics and Mass Transport -- 2.4.2 Butler-Volmer Equations and Departure from Equilibrium Potentials -- 2.4.3 Multistep Reactions -- 2.4.4 The Role of Adsorption -- 2.4.5 The Hydrogen Electrode and Oxygen Electrode Reactions -- 2.4.5.1 Hydrogen Oxidation and Evolution -- 2.4.5.2 The Oxygen Electrode -- 2.4.6 Voltammetry and the Platinum Electrode -- 2.4.6.1 Cyclic Voltammetry -- 2.4.7 Rotating Disc Electrode -- 2.4.7.1 Koutecky-Levich Analysis -- 2.4.8 Rotating Ring Disc Electrode -- 2.5 Photoelectrochemistry -- 2.5.1 Semiconductors and Light Absorption -- 2.5.2 Electron Transfer at Semiconductor Electrodes -- 2.5.3 Current-Potential Relations -- 2.6 Electrochemical Impedance Spectroscopy.
|
505 |
8 |
|
|a 2.6.1 Polarization Resistance -- 2.6.2 Warburg Impedance -- References -- Chapter 3 Electrochemical Cells, Materials and Reactors -- 3.1 Electrochemical Reactors -- 3.1.1 Current Efficiency -- 3.1.2 Production Rates -- 3.1.3 Energy Requirements -- 3.1.3.1 Cell Voltage -- 3.1.4 Energy Requirements and Efficiency in Hydrogen Production -- 3.1.4.1 Thermodynamics of Steam Electrolysis -- 3.1.4.2 Efficiency of Water Splitting to Hydrogen -- 3.2 Fuel Cells -- 3.2.1 Fuel Cell Efficiency -- 3.2.2 Practical Efficiencies -- 3.2.3 Fuel Cell Voltage -- 3.2.4 Mass Transport and Concentration Effects -- 3.2.5 Fuel and Oxidant Crossover -- 3.2.6 Figures of Merit -- 3.3 Batteries -- 3.3.1 C-Rate -- 3.4 Capacitors -- 3.4.1 Asymmetric Supercapacitors -- 3.5 Electrochemical Cell Engineering -- 3.5.1 Cell Designs -- 3.5.1.1 Temperature Control -- 3.5.1.2 The Distribution of Power and Current -- 3.5.2 Three-Dimensional Electrodes -- 3.5.3 Cell Components and Materials -- 3.5.3.1 Electrode Materials -- 3.5.3.2 Electrodes -- 3.5.3.3 Cell Membranes -- 3.5.3.4 Ion-Exchange Membranes -- 3.5.3.5 Species Transport in Membranes and Diaphragms -- 3.5.3.6 The Transport Number -- 3.5.3.7 Transport Processes in Diaphragms -- 3.5.3.8 Membranes and the Transport of Ions -- References -- Chapter 4 Carbon Dioxide Reduction and Electro-Organic Synthesis -- 4.1 Electrochemical Reduction of Carbon Dioxide -- 4.1.1 Technological Applications -- 4.1.1.1 Commercial Outlook -- 4.1.2 High Temperature Carbon Dioxide Electrolysis -- 4.1.3 Carbon Capture -- 4.1.4 Photoelectrochemical Reduction of Carbon Dioxide -- 4.1.5 Biological Electrochemical Reduction Processes -- 4.1.5.1 Bacteria and Enzyme Photocathodes for Carbon Dioxide Reduction -- 4.2 Organic Synthesis -- 4.2.1 Electro-Organic Syntheses -- 4.2.2 Electrosynthesis of Adiponitrile -- 4.3 Green Electro-Organic Synthesis.
|
505 |
8 |
|
|a 4.3.1 Ionic Liquids -- 4.3.2 Paired Electro-Organic Synthesis -- 4.4 Conclusions -- References -- Chapter 5 Hydrogen Production and Water Electrolysis -- 5.1 Fossil Fuel Based Hydrogen Production -- 5.2 Hydrogen via Electrolysis -- 5.2.1 Alkaline Electrolysers -- 5.2.1.1 Electrolyser Types and Materials -- 5.2.1.2 Electrode Materials -- 5.2.2 Solid Polymer Electrolyte Water Electrolysis -- 5.2.2.1 The Membrane Electrolyte -- 5.2.3 Electrocatalysts -- 5.2.3.1 Hydrogen Evolution -- 5.2.3.2 Oxygen Evolution -- 5.2.3.3 Catalyst Preparation -- 5.2.4 Production Rates and Energy Requirements in Water Electrolysis -- 5.2.5 Alkaline Polymer Electrolytes -- 5.2.6 High-Temperature Electrolysis of Steam -- 5.2.7 Electrolysis Using Organic Fuels -- 5.2.7.1 Electrolysis of Alcohols -- 5.2.8 Electrolytic Oxygen Generation -- 5.2.8.1 Electrochemical Air Purification -- 5.3 Photoelectrolysis -- 5.3.1 Photocatalysts -- 5.3.1.1 Dye-Sensitized Solar Cells -- 5.3.2 Photocathodes and Tandem Cells -- 5.4 Thermal and Electrochemical Generation of Hydrogen from Water -- 5.4.1 Thermochemical Hydrogen Production -- 5.4.2 Electrolysis and Thermochemical Cycles -- 5.4.2.1 Calcium-Bromine Cycle -- 5.4.2.2 Sulfur-Hydrogen Cycle -- 5.4.2.3 Sulfur-Bromine Cycle -- 5.4.2.4 Photoelectrocatalytic Process -- 5.4.2.5 Low Temperature Thermochemical Cycle -- 5.5 Chemical Production of Hydrogen -- 5.6 Conclusions -- References -- Chapter 6 Inorganic Synthesis -- 6.1 Chemicals from the Electrolysis of Halides -- 6.1.1 The Reaction Chemistry for the Chlorine -- 6.1.2 Chlorine and Sodium Hydroxide Production: The Chlor-Alkali Industry -- 6.1.2.1 Membrane Cells -- 6.1.2.2 Diaphragm Cells -- 6.1.2.3 Mercury Cells -- 6.1.2.4 Oxygen Cathodes -- 6.1.3 Hydrochloric Acid Electrolysis -- 6.1.4 Fluorine -- 6.1.5 Hypochlorite and Chlorate -- 6.1.6 Perchlorate and Perchloric Acid.
|
505 |
8 |
|
|a 6.1.7 Bromate, Iodate and Periodate -- 6.2 Electrolytic Processes for Metal Processing -- 6.2.1 Electrowinning -- 6.2.1.1 Aqueous Electrolytes -- 6.2.2 Molten Salt Electrolytes -- 6.2.2.1 Aluminium Production -- 6.2.3 Ionic Liquid Electrolytes -- 6.3 Inorganic Compounds and Salts -- 6.3.1 Peroxidisulfate Electrosynthesis -- 6.3.2 Permanganate -- 6.4 Generation of Chemical Oxidants -- 6.4.1 Hydrogen Peroxide -- 6.4.1.1 Electrochemistry of Hydrogen Peroxide Synthesis -- 6.4.1.2 Commercial Development -- 6.4.2 Ozone -- 6.4.2.1 Ozone Production from Water Electrolysis -- 6.5 Conclusions -- References -- Chapter 7 Electrochemical Energy Storage and Power Sources -- 7.1 Batteries -- 7.1.1 Secondary Batteries -- 7.1.1.1 Ragone Plots -- 7.1.2 Types of Batteries -- 7.1.3 Lithium-Ion Batteries -- 7.1.4 Molten Salt Batteries -- 7.1.5 Metal-Air Batteries -- 7.1.5.1 Zinc-Air Battery -- 7.1.5.2 Lithium-Air Battery -- 7.1.5.3 Aprotic Solvent Rechargeable Li-Air Battery -- 7.1.5.4 Solid-State Li-Air Battery -- 7.1.5.5 Mixed Aqueous/Aprotic -- 7.1.5.6 Other Non-Aqueous Metal-Air Batteries -- 7.1.5.7 Sodium-Air Batteries -- 7.1.5.8 Other Battery Development -- 7.1.6 Redox Flow Batteries -- 7.1.6.1 Redox Battery Systems -- 7.1.6.2 All-Vanadium Redox Flow Cell -- 7.1.6.3 Vanadium-Chloride/Polyhalide Redox Flow Cell -- 7.1.6.4 Polysulfide-Bromide Fuel Cell -- 7.1.6.5 Vanadium-Cerium Redox Flow Cell -- 7.1.7 Carbon-Air Batteries -- 7.1.7.1 Direct Carbon-Air Fuel Cell Reactions -- 7.1.7.2 Direct Carbon Fuel Cell Technology Based on Metal Hydroxide Electrolyte -- 7.1.8 Borohydride Cells -- 7.1.8.1 Hydrogen Peroxide Oxidant -- 7.2 Supercapacitors -- 7.2.1 Electrolytes for Supercapacitors -- 7.2.2 Hybrid or Asymmeytric Supercapacitors -- 7.2.2.1 Gel Polymer Electrolytes -- 7.3 Biological Fuel Cells -- 7.3.1 Microbial Fuel Cells.
|
505 |
8 |
|
|a 7.3.1.1 Measuring Microbial Fuel Cell Performance -- 7.3.1.2 Performance of a Microbial Fuel Cell -- 7.3.1.3 Membranes for Microbial Fuel Cells -- 7.3.1.4 Applications of Microbial Fuel Cells -- 7.3.1.5 Treatment of Biodegradable Organic Matter -- 7.3.2 Enzymatic Fuel Cells -- 7.3.2.1 Mediated Electron-Transfer -- 7.3.2.2 Enzymes for Cathodic Reactions in Biological Fuel Cells -- References -- Chapter 8 Electrochemical Energy Systems and Power Sources: Fuel Cells -- 8.1 Introduction -- 8.2 Principle of Fuel Cell Operation -- 8.3 Fuel Cell Systems -- 8.3.1 Cell Stacking -- 8.3.2 Fuel Cell Balance of Plant -- 8.4 Polymer Electrolyte Membrane Fuel Cells -- 8.4.1 Polymer Electrolyte Membrane Fuel Cell structure -- 8.4.2 Gas Diffusion Layer -- 8.4.3 Water Management -- 8.4.4 Catalysts -- 8.4.5 Membrane Materials -- 8.4.6 Material Issues in Polymer Electrolyte Membrane Fuel Cells -- 8.4.7 Polymer Electrolyte Membrane Fuel Cell Performance -- 8.4.8 Higher Temperature Membranes -- 8.4.9 Membranes with Heteropolyacids -- 8.4.9.1 Pyrophosphates -- 8.4.9.2 Solid Acids -- 8.4.10 Alkaline Anion-Exchange Membranes -- 8.5 Alkaline Fuel Cells -- 8.5.1 Cell Components -- 8.5.1.1 Gas Diffusion Electrodes -- 8.5.1.2 Commercial Development -- 8.6 Medium and High Temperature Fuel Cells -- 8.6.1 Phosphoric Acid Fuel Cell -- 8.6.1.1 Cell Components -- 8.6.1.2 Bipolar Plates -- 8.6.1.3 Performance -- 8.6.2 Molten Carbonate Fuel Cell -- 8.6.2.1 Cell Components -- 8.6.2.2 Performance -- 8.6.2.3 Internal Reforming Molten Carbonate Fuel Cell -- 8.6.2.4 Degradation -- 8.6.2.5 Commercial Plants -- 8.6.3 Solid Oxide Fuel Cells -- 8.6.3.1 Cell Components -- 8.6.3.2 Cell and Stack Designs -- 8.6.3.3 Performance -- 8.6.4 Proton Conducting Ceramic Fuel Cells -- 8.7 Direct Alcohol Fuel Cells -- 8.7.1 Introduction -- 8.7.2 Anodic Oxidation of Methanol.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Electrochemistry.
|
650 |
|
0 |
|a Green electronics.
|
650 |
|
6 |
|a Électrochimie.
|
650 |
|
6 |
|a Électronique verte.
|
650 |
|
7 |
|a Electrochemistry
|2 fast
|
650 |
|
7 |
|a Green electronics
|2 fast
|
758 |
|
|
|i has work:
|a Sustainable and green electrochemical science and technology (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGgPvmC44jhWrq4MvV8Ryq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Scott, K. (Keith), 1951-
|t Sustainable and green electrochemical science and technology.
|d Hoboken, New Jersey : Wiley Blackwell, ©2017
|h xvi, 392 pages
|z 9781119972440
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4862954
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32720604
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32720603
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4862954
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14501820
|
994 |
|
|
|a 92
|b IZTAP
|