|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1005658258 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170928t20172017riua ob 000 0 eng d |
010 |
|
|
|a 2017041531
|
040 |
|
|
|a CUY
|b eng
|e rda
|e pn
|c CUY
|d UIU
|d GZM
|d OCLCF
|d COD
|d EBLCP
|d IDB
|d OCLCQ
|d OCLCA
|d UKAHL
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1010638425
|a 1262669476
|
020 |
|
|
|a 9781470441333
|q (online)
|
020 |
|
|
|a 1470441330
|q (online)
|
020 |
|
|
|z 9781470425654
|q (print)
|
020 |
|
|
|a 1470425653
|q (acid-free paper)
|
020 |
|
|
|a 9781470425654
|
029 |
1 |
|
|a AU@
|b 000069392776
|
035 |
|
|
|a (OCoLC)1005658258
|z (OCoLC)1010638425
|z (OCoLC)1262669476
|
050 |
|
4 |
|a QA326
|b .J86 2018
|
082 |
0 |
4 |
|a 512/.556
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Junge, Marius,
|e author.
|
245 |
1 |
0 |
|a Hypercontractivity in group Von Neumann algebras /
|c Marius Junge, Carlos Palazuelos, Javier Parcet, Mathilde Perrin.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (v, 83 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 249, number 1183
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 249, Number 1183 (fourth of 8 numbers), September 2017."
|
504 |
|
|
|a Includes bibliographical references (pages 81-83).
|
505 |
0 |
|
|a Introduction -- The combinatorial method -- Optimal time estimates -- Poisson-like lengths -- Appendix A: Logarithmic Sobolev inequalities -- Appendix B: The word length in Z[subscript n] -- Appendix C: Numerical analysis -- Appendix D: Technical inequalities -- Bibliography.
|
520 |
|
|
|a In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1 <p \le q <\infty via logarithmic Sobolev inequalities. The authors' method admits further applications to ot.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Von Neumann algebras.
|
650 |
|
0 |
|a Group algebras.
|
650 |
|
6 |
|a Algèbres de Von Neumann.
|
650 |
|
6 |
|a Algèbres de groupes.
|
650 |
|
7 |
|a Group algebras
|2 fast
|
650 |
|
7 |
|a Von Neumann algebras
|2 fast
|
700 |
1 |
|
|a Palazuelos, Carlos,
|d 1979-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjBmtHRhbdYwtvFxdDMbMP
|
700 |
1 |
|
|a Parcet, Javier,
|d 1975-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjyJv949f4fjTMRD4QBv6q
|
700 |
1 |
|
|a Perrin, Mathilde,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Hypercontractivity in group Von Neumann algebras (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFyyhkbDxhYvDYDbv4R7Vy
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Junge, Marius.
|t Hypercontractivity in group Von Neumann algebras.
|d Providence, Rhode Island : American Mathematical Society, 2017
|z 9781470425654
|w (DLC) 2017041531
|w (OCoLC)1004511642
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1183.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5110283
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445112
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5110283
|
994 |
|
|
|a 92
|b IZTAP
|