Hypercontractivity in group Von Neumann algebras /
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2017.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1183. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1 <p \le q <\infty via logarithmic Sobolev inequalities. The authors' method admits further applications to ot. |
---|---|
Notas: | "Volume 249, Number 1183 (fourth of 8 numbers), September 2017." |
Descripción Física: | 1 online resource (v, 83 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 81-83). |
ISBN: | 9781470441333 1470441330 1470425653 9781470425654 |
ISSN: | 0065-9266 ; |