|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1005658126 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170928t20172017riua ob 000 0 eng d |
010 |
|
|
|a 2017040394
|
040 |
|
|
|a CUY
|b eng
|e rda
|e pn
|c CUY
|d GZM
|d UIU
|d COO
|d COD
|d OCLCF
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCA
|d UKAHL
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1262682736
|
020 |
|
|
|a 9781470441272
|q (online)
|
020 |
|
|
|a 1470441276
|q (online)
|
020 |
|
|
|z 9781470425425
|q (print)
|
020 |
|
|
|a 1470425424
|q (alk. paper)
|
020 |
|
|
|a 9781470425425
|
029 |
1 |
|
|a AU@
|b 000069392775
|
035 |
|
|
|a (OCoLC)1005658126
|z (OCoLC)1262682736
|
050 |
|
4 |
|a QA645
|b .K53 2017
|
082 |
0 |
4 |
|a 516.3/62
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Klartag, Bo'az,
|e author.
|
245 |
1 |
0 |
|a Needle decompositions in Riemannian geometry /
|c Bo'az Klartag.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (v, 77 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 249, number 1180
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 249, Number 1180 (first of 8 numbers), September 2017."
|
504 |
|
|
|a Includes bibliographical references (pages 75-77).
|
520 |
|
|
|a The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, our method is based on the following observation: When the Ricci curvature is nonnegative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in our analysis.
|
505 |
0 |
|
|a Introduction -- Regularity of geodesic foliations -- Conditioning a measure with respect to a geodesic foliation -- The Monge-Kantorovich problem -- Some applications -- Further research -- Appendix: The Feldman-McCann proof of Lemma 2.4.1 -- Bibliography.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Curvature.
|
650 |
|
0 |
|a Decomposition (Mathematics)
|
650 |
|
0 |
|a Geometry, Riemannian.
|
650 |
|
6 |
|a Courbure.
|
650 |
|
6 |
|a Décomposition (Mathématiques)
|
650 |
|
6 |
|a Géométrie de Riemann.
|
650 |
|
7 |
|a Curvature
|2 fast
|
650 |
|
7 |
|a Decomposition (Mathematics)
|2 fast
|
650 |
|
7 |
|a Geometry, Riemannian
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Needle decompositions in Riemannian geometry (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGWF3dQ3QH3mfk7xP9q6Dq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Klartag, Bo'az.
|t Needle decompositions in Riemannian geometry.
|d Providence, Rhode Island : American Mathematical Society, [2017]
|z 9781470425425
|w (DLC) 2017040394
|w (OCoLC)990123949
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1180.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5110280
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445109
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5110280
|
994 |
|
|
|a 92
|b IZTAP
|