Cargando…

Needle decompositions in Riemannian geometry /

The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, our method is based on the following observation: When the Ricci curvature is nonnegative, log-concave measures are obtained when conditio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Klartag, Bo'az (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1180.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, our method is based on the following observation: When the Ricci curvature is nonnegative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in our analysis.
Notas:"Volume 249, Number 1180 (first of 8 numbers), September 2017."
Descripción Física:1 online resource (v, 77 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 75-77).
ISBN:9781470441272
1470441276
1470425424
9781470425425
ISSN:0065-9266 ;