Cargando…

Property (T) for groups graded by root systems /

The authors introduce and study the class of groups graded by root systems. They prove that if \Phi is an irreducible classical root system of rank \geq 2 and G is a group graded by \Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ershov, Mikhail, 1978- (Autor), Jaikin-Zapirain, Andrei (Autor), Kassabov, Martin, 1977- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1186.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:The authors introduce and study the class of groups graded by root systems. They prove that if \Phi is an irreducible classical root system of rank \geq 2 and G is a group graded by \Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \Phi of rank \geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\mathrm St}_{\Phi}(R) and the elementary Chevalley group \mathbb E_{\Phi}(R) have property (T).
Notas:"Volume 249, Number 1186 (seventh of 8 numbers), September 2017."
Descripción Física:1 online resource (v, 135 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 133-134) and index.
ISBN:9781470441395
147044139X
1470426048
9781470426040
ISSN:0065-9266 ;