Fundamental solutions and local solvability for nonsmooth Hörmander's operators /
The authors consider operators of the form L=\sum_{i=1}^{n}X_{i}^{2}+X_{0} in a bounded domain of \mathbb{R}^{p} where X_{0}, X_{1}, \ldots, X_{n} are nonsmooth Hörmander's vector fields of step r such that the highest order commutators are only Hölder continuous. Applying Levi's paramet...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2017.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1182. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The authors consider operators of the form L=\sum_{i=1}^{n}X_{i}^{2}+X_{0} in a bounded domain of \mathbb{R}^{p} where X_{0}, X_{1}, \ldots, X_{n} are nonsmooth Hörmander's vector fields of step r such that the highest order commutators are only Hölder continuous. Applying Levi's parametrix method the authors construct a local fundamental solution \gamma for L and provide growth estimates for \gamma and its first derivatives with respect to the vector fields. Requiring the existence of one more derivative of the coefficients the authors prove that \gamma also possesses second derivatives, and the. |
---|---|
Notas: | "Volume 249, Number 1182 (third of 8 numbers), September 2017." |
Descripción Física: | 1 online resource (v, 79 pages) |
Bibliografía: | Includes bibliographical references (pages 77-79). |
ISBN: | 9781470441319 1470441314 |
ISSN: | 0065-9266 ; |