Computational acoustics : theory and implementation /
Covers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc.,
2018.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright Page
- Contents
- Series Preface
- Chapter 1 Introduction
- Chapter 2 Computation and Related Topics
- 2.1 Floating-Point Numbers
- 2.1.1 Representations of Numbers
- 2.1.2 Floating-Point Numbers
- 2.2 Computational Cost
- 2.3 Fidelity
- 2.4 Code Development
- 2.5 List of Open-Source Tools
- 2.6 Exercises
- References
- Chapter 3 Derivation of the Wave Equation
- 3.1 Introduction
- 3.2 General Properties of Waves
- 3.3 One-Dimensional Waves on a String
- 3.4 Waves in Elastic Solids
- 3.5 Waves in Ideal Fluids
- 3.5.1 Setting Up the Derivation
- 3.5.2 A Simple Example
- 3.5.3 Linearized Equations
- 3.5.4 A Second-Order Equation from Differentiation
- 3.5.5 A Second-Order Equation from a Velocity Potential
- 3.5.6 Second-Order Equation without Perturbations
- 3.5.7 Special Form of the Operator
- 3.5.8 Discussion Regarding Fluid Acoustics
- 3.6 Thin Rods and Plates
- 3.7 Phonons
- 3.8 Tensors Lite
- 3.9 Exercises
- References
- Chapter 4 Methods for Solving the Wave Equation
- 4.1 Introduction
- 4.2 Method of Characteristics
- 4.3 Separation of Variables
- 4.4 Homogeneous Solution in Separable Coordinates
- 4.4.1 Cartesian Coordinates
- 4.4.2 Cylindrical Coordinates
- 4.4.3 Spherical Coordinates
- 4.5 Boundary Conditions
- 4.6 Representing Functions with the Homogeneous Solutions
- 4.7 Greeńs Function
- 4.7.1 Greeńs Function in Free Space
- 4.7.2 Mode Expansion of Greeńs Functions
- 4.8 Method of Images
- 4.9 Comparison of Modes to Images
- 4.10 Exercises
- References
- Chapter 5 Wave Propagation
- 5.1 Introduction
- 5.2 Fourier Decomposition and Synthesis
- 5.3 Dispersion
- 5.4 Transmission and Reflection
- 5.5 Attenuation
- 5.6 Exercises
- References
- Chapter 6 Normal Modes
- 6.1 Introduction
- 6.2 Mode Theory
- 6.3 Profile Models.
- 6.4 Analytic Examples
- 6.4.1 Example 1: Harmonic Oscillator
- 6.4.2 Example 2: Linear
- 6.5 Perturbation Theory
- 6.6 Multidimensional Problems and Degeneracy
- 6.7 Numerical Approach to Modes
- 6.7.1 Derivation of the Relaxation Equation
- 6.7.2 Boundary Conditions in the Relaxation Method
- 6.7.3 Initializing the Relaxation
- 6.7.4 Stopping the Relaxation
- 6.8 Coupled Modes and the Pekeris Waveguide
- 6.8.1 Pekeris Waveguide
- 6.8.2 Coupled Modes
- 6.9 Exercises
- References
- Chapter 7 Ray Theory
- 7.1 Introduction
- 7.2 High Frequency Expansion of the Wave Equation
- 7.2.1 Eikonal Equation and Ray Paths
- 7.2.2 Paraxial Rays
- 7.3 Amplitude
- 7.4 Ray Path Integrals
- 7.5 Building a Field from Rays
- 7.6 Numerical Approach to Ray Tracing
- 7.7 Complete Paraxial Ray Trace
- 7.8 Implementation Notes
- 7.9 Gaussian Beam Tracing
- 7.10 Exercises
- References
- Chapter 8 Finite Difference and Finite Difference Time Domain
- 8.1 Introduction
- 8.2 Finite Difference
- 8.3 Time Domain
- 8.4 FDTD Representation of the Linear Wave Equation
- 8.5 Exercises
- References
- Chapter 9 Parabolic Equation
- 9.1 Introduction
- 9.2 The Paraxial Approximation
- 9.3 Operator Factoring
- 9.4 Pauli Spin Matrices
- 9.5 Reduction of Order
- 9.5.1 The Padé Approximation
- 9.5.2 Phase Space Representation
- 9.5.3 Diagonalizing the Hamiltonian
- 9.6 Numerical Approach
- 9.7 Exercises
- References
- Chapter 10 Finite Element Method
- 10.1 Introduction
- 10.2 The Finite Element Technique
- 10.3 Discretization of the Domain
- 10.3.1 One-Dimensional Domains
- 10.3.2 Two-Dimensional Domains
- 10.3.3 Three-Dimensional Domains
- 10.3.4 Using Gmsh
- 10.4 Defining Basis Elements
- 10.4.1 One-Dimensional Basis Elements
- 10.4.2 Two-Dimensional Basis Elements
- 10.4.3 Three-Dimensional Basis Elements.
- 10.5 Expressing the Helmholtz Equation in the FEM Basis
- 10.6 Numerical Integration over Triangular and Tetrahedral Domains
- 10.6.1 Gaussian Quadrature
- 10.6.2 Integration over Triangular Domains
- 10.6.3 Integration over Tetrahedral Domains
- 10.7 Implementation Notes
- 10.8 Exercises
- References
- Chapter 11 Boundary Element Method
- 11.1 Introduction
- 11.2 The Boundary Integral Equations
- 11.3 Discretization of the BIE
- 11.4 Basis Elements and Test Functions
- 11.5 Coupling Integrals
- 11.5.1 Derivation of Coupling Terms
- 11.5.2 Singularity Extraction
- 11.5.3 Evaluation of the Singular Part
- 11.5.3.1 Closed-Form Expression for the Singular Part of K
- 11.5.3.2 Method for Partial Analytic Evaluation
- 11.5.3.3 The Hypersingular Integral
- 11.6 Scattering from Closed Surfaces
- 11.7 Implementation Notes
- 11.8 Comments on Additional Techniques
- 11.8.1 Higher-Order Methods
- 11.8.2 Body of Revolution
- 11.9 Exercises
- References
- Index
- EULA.