Cargando…

Computational acoustics : theory and implementation /

Covers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bergman, David R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Series Preface
  • Chapter 1 Introduction
  • Chapter 2 Computation and Related Topics
  • 2.1 Floating-Point Numbers
  • 2.1.1 Representations of Numbers
  • 2.1.2 Floating-Point Numbers
  • 2.2 Computational Cost
  • 2.3 Fidelity
  • 2.4 Code Development
  • 2.5 List of Open-Source Tools
  • 2.6 Exercises
  • References
  • Chapter 3 Derivation of the Wave Equation
  • 3.1 Introduction
  • 3.2 General Properties of Waves
  • 3.3 One-Dimensional Waves on a String
  • 3.4 Waves in Elastic Solids
  • 3.5 Waves in Ideal Fluids
  • 3.5.1 Setting Up the Derivation
  • 3.5.2 A Simple Example
  • 3.5.3 Linearized Equations
  • 3.5.4 A Second-Order Equation from Differentiation
  • 3.5.5 A Second-Order Equation from a Velocity Potential
  • 3.5.6 Second-Order Equation without Perturbations
  • 3.5.7 Special Form of the Operator
  • 3.5.8 Discussion Regarding Fluid Acoustics
  • 3.6 Thin Rods and Plates
  • 3.7 Phonons
  • 3.8 Tensors Lite
  • 3.9 Exercises
  • References
  • Chapter 4 Methods for Solving the Wave Equation
  • 4.1 Introduction
  • 4.2 Method of Characteristics
  • 4.3 Separation of Variables
  • 4.4 Homogeneous Solution in Separable Coordinates
  • 4.4.1 Cartesian Coordinates
  • 4.4.2 Cylindrical Coordinates
  • 4.4.3 Spherical Coordinates
  • 4.5 Boundary Conditions
  • 4.6 Representing Functions with the Homogeneous Solutions
  • 4.7 Greeńs Function
  • 4.7.1 Greeńs Function in Free Space
  • 4.7.2 Mode Expansion of Greeńs Functions
  • 4.8 Method of Images
  • 4.9 Comparison of Modes to Images
  • 4.10 Exercises
  • References
  • Chapter 5 Wave Propagation
  • 5.1 Introduction
  • 5.2 Fourier Decomposition and Synthesis
  • 5.3 Dispersion
  • 5.4 Transmission and Reflection
  • 5.5 Attenuation
  • 5.6 Exercises
  • References
  • Chapter 6 Normal Modes
  • 6.1 Introduction
  • 6.2 Mode Theory
  • 6.3 Profile Models.
  • 6.4 Analytic Examples
  • 6.4.1 Example 1: Harmonic Oscillator
  • 6.4.2 Example 2: Linear
  • 6.5 Perturbation Theory
  • 6.6 Multidimensional Problems and Degeneracy
  • 6.7 Numerical Approach to Modes
  • 6.7.1 Derivation of the Relaxation Equation
  • 6.7.2 Boundary Conditions in the Relaxation Method
  • 6.7.3 Initializing the Relaxation
  • 6.7.4 Stopping the Relaxation
  • 6.8 Coupled Modes and the Pekeris Waveguide
  • 6.8.1 Pekeris Waveguide
  • 6.8.2 Coupled Modes
  • 6.9 Exercises
  • References
  • Chapter 7 Ray Theory
  • 7.1 Introduction
  • 7.2 High Frequency Expansion of the Wave Equation
  • 7.2.1 Eikonal Equation and Ray Paths
  • 7.2.2 Paraxial Rays
  • 7.3 Amplitude
  • 7.4 Ray Path Integrals
  • 7.5 Building a Field from Rays
  • 7.6 Numerical Approach to Ray Tracing
  • 7.7 Complete Paraxial Ray Trace
  • 7.8 Implementation Notes
  • 7.9 Gaussian Beam Tracing
  • 7.10 Exercises
  • References
  • Chapter 8 Finite Difference and Finite Difference Time Domain
  • 8.1 Introduction
  • 8.2 Finite Difference
  • 8.3 Time Domain
  • 8.4 FDTD Representation of the Linear Wave Equation
  • 8.5 Exercises
  • References
  • Chapter 9 Parabolic Equation
  • 9.1 Introduction
  • 9.2 The Paraxial Approximation
  • 9.3 Operator Factoring
  • 9.4 Pauli Spin Matrices
  • 9.5 Reduction of Order
  • 9.5.1 The Padé Approximation
  • 9.5.2 Phase Space Representation
  • 9.5.3 Diagonalizing the Hamiltonian
  • 9.6 Numerical Approach
  • 9.7 Exercises
  • References
  • Chapter 10 Finite Element Method
  • 10.1 Introduction
  • 10.2 The Finite Element Technique
  • 10.3 Discretization of the Domain
  • 10.3.1 One-Dimensional Domains
  • 10.3.2 Two-Dimensional Domains
  • 10.3.3 Three-Dimensional Domains
  • 10.3.4 Using Gmsh
  • 10.4 Defining Basis Elements
  • 10.4.1 One-Dimensional Basis Elements
  • 10.4.2 Two-Dimensional Basis Elements
  • 10.4.3 Three-Dimensional Basis Elements.
  • 10.5 Expressing the Helmholtz Equation in the FEM Basis
  • 10.6 Numerical Integration over Triangular and Tetrahedral Domains
  • 10.6.1 Gaussian Quadrature
  • 10.6.2 Integration over Triangular Domains
  • 10.6.3 Integration over Tetrahedral Domains
  • 10.7 Implementation Notes
  • 10.8 Exercises
  • References
  • Chapter 11 Boundary Element Method
  • 11.1 Introduction
  • 11.2 The Boundary Integral Equations
  • 11.3 Discretization of the BIE
  • 11.4 Basis Elements and Test Functions
  • 11.5 Coupling Integrals
  • 11.5.1 Derivation of Coupling Terms
  • 11.5.2 Singularity Extraction
  • 11.5.3 Evaluation of the Singular Part
  • 11.5.3.1 Closed-Form Expression for the Singular Part of K
  • 11.5.3.2 Method for Partial Analytic Evaluation
  • 11.5.3.3 The Hypersingular Integral
  • 11.6 Scattering from Closed Surfaces
  • 11.7 Implementation Notes
  • 11.8 Comments on Additional Techniques
  • 11.8.1 Higher-Order Methods
  • 11.8.2 Body of Revolution
  • 11.9 Exercises
  • References
  • Index
  • EULA.