Cargando…

Mechanics of dislocation fields /

Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fressengeas, Claude (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : ISTE, Ltd., 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Half-Title Page; Title Page; Copyright Page; Contents; Acknowledgements; Introduction; 1. Continuous Dislocation Modeling; 1.1. Introduction; 1.2. Lattice incompatibility; 1.3. Burgers vector; 1.4. Compatibility conditions; 1.5. Dislocation fields; 1.6. Tangential continuity at interfaces; 1.7. Curvatures and rotational incompatibiliy; 1.8. Incompatibility tensor; 1.9. Conclusion; 1.10. Problems; 1.10.1. Discrete versus continuous modeling of crystal defects; 1.10.2. Incompatibility in simple shear; 1.10.3. Frank's relation; 1.11. Solutions.
  • 1.11.1. Discrete versus continuous modeling of crystal defects1.11.2. Incompatibility in simple shear; 1.11.3. Frank's relation; 2. Elasto-static Field Equations; 2.1. Introduction; 2.2. Elasto-static solution to field equations; 2.2.1. Stokes-Helmholtz decomposition and Poisson-type equations; 2.2.2. Navier-type equations for compatible elastic distortion fields; 2.3. Straight screw dislocation in a linear isotropic elastic medium; 2.4. Straight edge dislocation in a linear isotropic elastic medium; 2.5. Conclusion; 2.6. Problems; 2.6.1. Screw dislocation; 2.6.2. Twist boundary.
  • 2.6.3. Tilt boundary2.6.4. Zero-stress everywhere dislocation fields; 2.7. Solutions; 2.7.1. Screw dislocation; 2.7.2. Twist boundary; 2.7.3. Tilt boundary; 2.7.4. Zero-stress everywhere dislocation fields; 3. Dislocation Transport; 3.1. Introduction; 3.2. Dislocation flux and plastic distortion rate; 3.3. Coarse graining; 3.4. Compatibility versus incompatibility of plasticity; 3.5. Tangential continuity of plastic distortion rate; 3.6. Transport equations; 3.6.1. Small transformations; 3.6.2. Finite transformations; 3.7. Transport waves; 3.7.1. Annihilation.
  • 3.7.2. Expansion of dislocation loops3.7.3. Initiation of a Frank-Read source; 3.8. Numerical algorithms for dislocation transport; 3.9. Conclusion; 3.10. Problems; 3.10.1. Propagation of a discontinuous dislocation density; 3.10.2. Dislocation loop expansion; 3.10.3. Stability / instability of homogeneous dislocation distributions; 3.10.4. Dislocation nucleation; 3.11. Solutions; 3.11.1. Propagation of a discontinuous dislocation density; 3.11.2. Expansion of dislocation loops; 3.11.3. Stability / instability of homogeneous dislocation distributions; 3.11.4. Dislocation nucleation.
  • 4. Constitutive Relations4.1. Introduction; 4.2. Dissipation; 4.3. Pressure independence; 4.4. Dislocation climb versus dislocation glide; 4.5. Viscoplastic relationships; 4.6. Coarse graining; 4.7. Contact with conventional crystal plasticity; 5. Elasto-plastic Field Equations; 5.1. Introduction; 5.2. Fundamental field equations; 5.3. Boundary conditions; 5.4. Coarse graining; 5.5. Resolution algorithm; 5.6. Reduced field equations; 5.6.1. Plane dislocations; 5.7. Augmented crystal plasticity; 5.8. Dynamics of a twist boundary; 5.9. Conclusion; 5.10. Problems; 5.10.1. Helical dislocations.