Cargando…

Thermoelectric Energy Conversion : Basic Concepts and Device Applications.

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pineda, Diana Davila
Otros Autores: Brand, Oliver, Fedder, Gary K., Hierold, Christofer, Korvink, Jan G., Tabata, Osamu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:Advanced Micro and Nanosystems Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; About the Editors; Series Editors' Preface; List of Contributors; Chapter 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV-VI Alloys; 1.1 Introduction; 1.2 IV-VI Alloys for Waste Heat Thermoelectric Applications; 1.3 Thermodynamically Driven Phase Separation Reactions; 1.4 Selected IV-VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions; 1.5 Concluding Remarks; References; Chapter 2 Nanostructured Materials: Enhancing the Thermoelectric Performance; 2.1 Introduction.
  • 2.2 Approaches for Improving ZT2.3 Recent Progress in Developing Bulk Thermoelectric Materials; 2.4 Bulk Nanostructured Thermoelectric Materials; 2.4.1 Bi2Te3-Based Nanocomposites; 2.4.2 PbTe-Based Nanostructured Materials; 2.4.3 Half-Heusler Alloys; 2.4.4 Nanostructured Skutterudite Materials; 2.4.5 Nanostructured Oxide Materials; 2.4.5.1 p-Type Oxides; 2.4.5.2 n-Type Oxides; 2.5 Outlook and Challenges; Acknowledgement; References; Chapter 3 Organic Thermoelectric Materials; 3.1 Introduction; 3.2 Seebeck Coefficient and Electronic Structure.
  • 3.3 Seebeck Coefficient and Charge Carrier Mobility3.4 Optimization of the Figure of Merit; 3.5 N-Doping of Conjugated Polymers; 3.6 Elastic Thermoelectric Polymers; 3.7 Conclusions; Acknowledgments; References; Chapter 4 Silicon for Thermoelectric Energy Harvesting Applications; 4.1 Introduction; 4.1.1 Silicon as a Thermoelectric Material; 4.1.2 Current Uses of Silicon in TEGs; 4.2 Bulk and Thin-Film Silicon; 4.2.1 Single-Crystalline and Polycrystalline Silicon; 4.2.2 Degenerate and Phase-Segregated Silicon; 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers; 4.3.1 Introduction.
  • 4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials; 4.4 Bottom-Up Nanowires; 4.4.1 Preparation Strategies; 4.4.2 Chemical Vapor Deposition (CVD); 4.4.3 Molecular Beam Epitaxy (MBE); 4.4.4 Laser Ablation; 4.4.5 Solution-Based Techniques; 4.4.6 Catalyst Materials; 4.4.7 Catalyst Deposition Methods; 4.5 Material Properties and Thermoelectric Efficiency; 4.6 Top-Down Nanowires; 4.6.1 Preparation Strategies; 4.6.2 Material Properties and Thermoelectric Efficiency.
  • 4.7 Applications of Bulk and Thin-Film Silicon and SiGe Alloys to Energy Harvesting4.8 Applications of Nanostructured Silicon to Energy Harvesting; 4.8.1 Bottom-Up Nanowires; 4.8.2 Top-Down Nanowires; 4.9 Summary and Outlook; Acknowledgments; References; Chapter 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency; 5.1 Introduction
  • Hitting the Target; 5.2 Thermal Transport in Gases and Solid-State Materials; 5.3 The Combined Parameter ZT-Value; 5.3.1 Electrical Conductivity; 5.3.2 Seebeck Coefficient; 5.3.3 Thermal Conductivity; 5.4 Summary.