Cargando…

Thermoelectric Energy Conversion : Basic Concepts and Device Applications.

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pineda, Diana Davila
Otros Autores: Brand, Oliver, Fedder, Gary K., Hierold, Christofer, Korvink, Jan G., Tabata, Osamu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:Advanced Micro and Nanosystems Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1004623128
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170923s2017 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d VT2  |d OCLCQ  |d UEJ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1111284971  |a 1244442191 
020 |a 9783527698141 
020 |a 3527698140 
020 |a 9783527340712 
020 |a 3527340718  |q (Trade Cloth) 
024 3 |a 9783527340712 
035 |a (OCoLC)1004623128  |z (OCoLC)1111284971  |z (OCoLC)1244442191 
037 |b 00028608 
050 4 |a TK2950  |b .T44 2017 
082 0 4 |a 621.31243  |2 23 
049 |a UAMI 
100 1 |a Pineda, Diana Davila. 
245 1 0 |a Thermoelectric Energy Conversion :  |b Basic Concepts and Device Applications. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2017. 
300 |a 1 online resource (339 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced Micro and Nanosystems Ser. 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; About the Editors; Series Editors' Preface; List of Contributors; Chapter 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV-VI Alloys; 1.1 Introduction; 1.2 IV-VI Alloys for Waste Heat Thermoelectric Applications; 1.3 Thermodynamically Driven Phase Separation Reactions; 1.4 Selected IV-VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions; 1.5 Concluding Remarks; References; Chapter 2 Nanostructured Materials: Enhancing the Thermoelectric Performance; 2.1 Introduction. 
505 8 |a 2.2 Approaches for Improving ZT2.3 Recent Progress in Developing Bulk Thermoelectric Materials; 2.4 Bulk Nanostructured Thermoelectric Materials; 2.4.1 Bi2Te3-Based Nanocomposites; 2.4.2 PbTe-Based Nanostructured Materials; 2.4.3 Half-Heusler Alloys; 2.4.4 Nanostructured Skutterudite Materials; 2.4.5 Nanostructured Oxide Materials; 2.4.5.1 p-Type Oxides; 2.4.5.2 n-Type Oxides; 2.5 Outlook and Challenges; Acknowledgement; References; Chapter 3 Organic Thermoelectric Materials; 3.1 Introduction; 3.2 Seebeck Coefficient and Electronic Structure. 
505 8 |a 3.3 Seebeck Coefficient and Charge Carrier Mobility3.4 Optimization of the Figure of Merit; 3.5 N-Doping of Conjugated Polymers; 3.6 Elastic Thermoelectric Polymers; 3.7 Conclusions; Acknowledgments; References; Chapter 4 Silicon for Thermoelectric Energy Harvesting Applications; 4.1 Introduction; 4.1.1 Silicon as a Thermoelectric Material; 4.1.2 Current Uses of Silicon in TEGs; 4.2 Bulk and Thin-Film Silicon; 4.2.1 Single-Crystalline and Polycrystalline Silicon; 4.2.2 Degenerate and Phase-Segregated Silicon; 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers; 4.3.1 Introduction. 
505 8 |a 4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials; 4.4 Bottom-Up Nanowires; 4.4.1 Preparation Strategies; 4.4.2 Chemical Vapor Deposition (CVD); 4.4.3 Molecular Beam Epitaxy (MBE); 4.4.4 Laser Ablation; 4.4.5 Solution-Based Techniques; 4.4.6 Catalyst Materials; 4.4.7 Catalyst Deposition Methods; 4.5 Material Properties and Thermoelectric Efficiency; 4.6 Top-Down Nanowires; 4.6.1 Preparation Strategies; 4.6.2 Material Properties and Thermoelectric Efficiency. 
505 8 |a 4.7 Applications of Bulk and Thin-Film Silicon and SiGe Alloys to Energy Harvesting4.8 Applications of Nanostructured Silicon to Energy Harvesting; 4.8.1 Bottom-Up Nanowires; 4.8.2 Top-Down Nanowires; 4.9 Summary and Outlook; Acknowledgments; References; Chapter 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency; 5.1 Introduction -- Hitting the Target; 5.2 Thermal Transport in Gases and Solid-State Materials; 5.3 The Combined Parameter ZT-Value; 5.3.1 Electrical Conductivity; 5.3.2 Seebeck Coefficient; 5.3.3 Thermal Conductivity; 5.4 Summary. 
500 |a Acknowledgments. 
520 8 |a Annotation  |b This ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity, thus building a bridge between industry and scientific researchers seeking to develop thermoelectric generators. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Thermoelectricity. 
650 0 |a Thermoelectric apparatus and appliances. 
650 4 |a Energy Conservation. 
650 4 |a Technology & Engineering  |x Power Resources  |x General. 
650 6 |a Thermoélectricité. 
650 6 |a Appareils thermoélectriques. 
650 7 |a Thermoelectric apparatus and appliances  |2 fast 
650 7 |a Thermoelectricity  |2 fast 
700 1 |a Brand, Oliver. 
700 1 |a Fedder, Gary K. 
700 1 |a Hierold, Christofer. 
700 1 |a Korvink, Jan G. 
700 1 |a Tabata, Osamu. 
758 |i has work:  |a Thermoelectric energy conversion (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYpHDr9gtrpM4bff7pbHP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pineda, Diana Davila.  |t Thermoelectric Energy Conversion : Basic Concepts and Device Applications.  |d Newark : John Wiley & Sons, Incorporated, ©2017  |z 9783527340712 
830 0 |a Advanced Micro and Nanosystems Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5047925  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5047925 
994 |a 92  |b IZTAP