|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1004623128 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170923s2017 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d VT2
|d OCLCQ
|d UEJ
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1111284971
|a 1244442191
|
020 |
|
|
|a 9783527698141
|
020 |
|
|
|a 3527698140
|
020 |
|
|
|a 9783527340712
|
020 |
|
|
|a 3527340718
|q (Trade Cloth)
|
024 |
3 |
|
|a 9783527340712
|
035 |
|
|
|a (OCoLC)1004623128
|z (OCoLC)1111284971
|z (OCoLC)1244442191
|
037 |
|
|
|b 00028608
|
050 |
|
4 |
|a TK2950
|b .T44 2017
|
082 |
0 |
4 |
|a 621.31243
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Pineda, Diana Davila.
|
245 |
1 |
0 |
|a Thermoelectric Energy Conversion :
|b Basic Concepts and Device Applications.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2017.
|
300 |
|
|
|a 1 online resource (339 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Advanced Micro and Nanosystems Ser.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Contents; About the Editors; Series Editors' Preface; List of Contributors; Chapter 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV-VI Alloys; 1.1 Introduction; 1.2 IV-VI Alloys for Waste Heat Thermoelectric Applications; 1.3 Thermodynamically Driven Phase Separation Reactions; 1.4 Selected IV-VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions; 1.5 Concluding Remarks; References; Chapter 2 Nanostructured Materials: Enhancing the Thermoelectric Performance; 2.1 Introduction.
|
505 |
8 |
|
|a 2.2 Approaches for Improving ZT2.3 Recent Progress in Developing Bulk Thermoelectric Materials; 2.4 Bulk Nanostructured Thermoelectric Materials; 2.4.1 Bi2Te3-Based Nanocomposites; 2.4.2 PbTe-Based Nanostructured Materials; 2.4.3 Half-Heusler Alloys; 2.4.4 Nanostructured Skutterudite Materials; 2.4.5 Nanostructured Oxide Materials; 2.4.5.1 p-Type Oxides; 2.4.5.2 n-Type Oxides; 2.5 Outlook and Challenges; Acknowledgement; References; Chapter 3 Organic Thermoelectric Materials; 3.1 Introduction; 3.2 Seebeck Coefficient and Electronic Structure.
|
505 |
8 |
|
|a 3.3 Seebeck Coefficient and Charge Carrier Mobility3.4 Optimization of the Figure of Merit; 3.5 N-Doping of Conjugated Polymers; 3.6 Elastic Thermoelectric Polymers; 3.7 Conclusions; Acknowledgments; References; Chapter 4 Silicon for Thermoelectric Energy Harvesting Applications; 4.1 Introduction; 4.1.1 Silicon as a Thermoelectric Material; 4.1.2 Current Uses of Silicon in TEGs; 4.2 Bulk and Thin-Film Silicon; 4.2.1 Single-Crystalline and Polycrystalline Silicon; 4.2.2 Degenerate and Phase-Segregated Silicon; 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers; 4.3.1 Introduction.
|
505 |
8 |
|
|a 4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials; 4.4 Bottom-Up Nanowires; 4.4.1 Preparation Strategies; 4.4.2 Chemical Vapor Deposition (CVD); 4.4.3 Molecular Beam Epitaxy (MBE); 4.4.4 Laser Ablation; 4.4.5 Solution-Based Techniques; 4.4.6 Catalyst Materials; 4.4.7 Catalyst Deposition Methods; 4.5 Material Properties and Thermoelectric Efficiency; 4.6 Top-Down Nanowires; 4.6.1 Preparation Strategies; 4.6.2 Material Properties and Thermoelectric Efficiency.
|
505 |
8 |
|
|a 4.7 Applications of Bulk and Thin-Film Silicon and SiGe Alloys to Energy Harvesting4.8 Applications of Nanostructured Silicon to Energy Harvesting; 4.8.1 Bottom-Up Nanowires; 4.8.2 Top-Down Nanowires; 4.9 Summary and Outlook; Acknowledgments; References; Chapter 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency; 5.1 Introduction -- Hitting the Target; 5.2 Thermal Transport in Gases and Solid-State Materials; 5.3 The Combined Parameter ZT-Value; 5.3.1 Electrical Conductivity; 5.3.2 Seebeck Coefficient; 5.3.3 Thermal Conductivity; 5.4 Summary.
|
500 |
|
|
|a Acknowledgments.
|
520 |
8 |
|
|a Annotation
|b This ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity, thus building a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Thermoelectricity.
|
650 |
|
0 |
|a Thermoelectric apparatus and appliances.
|
650 |
|
4 |
|a Energy Conservation.
|
650 |
|
4 |
|a Technology & Engineering
|x Power Resources
|x General.
|
650 |
|
6 |
|a Thermoélectricité.
|
650 |
|
6 |
|a Appareils thermoélectriques.
|
650 |
|
7 |
|a Thermoelectric apparatus and appliances
|2 fast
|
650 |
|
7 |
|a Thermoelectricity
|2 fast
|
700 |
1 |
|
|a Brand, Oliver.
|
700 |
1 |
|
|a Fedder, Gary K.
|
700 |
1 |
|
|a Hierold, Christofer.
|
700 |
1 |
|
|a Korvink, Jan G.
|
700 |
1 |
|
|a Tabata, Osamu.
|
758 |
|
|
|i has work:
|a Thermoelectric energy conversion (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFYpHDr9gtrpM4bff7pbHP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Pineda, Diana Davila.
|t Thermoelectric Energy Conversion : Basic Concepts and Device Applications.
|d Newark : John Wiley & Sons, Incorporated, ©2017
|z 9783527340712
|
830 |
|
0 |
|a Advanced Micro and Nanosystems Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5047925
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5047925
|
994 |
|
|
|a 92
|b IZTAP
|