Cargando…

Short-Circuit Withstand Capability of Power Transformers.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Geißler, Daniel Hermann
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Göttingen : Cuvillier Verlag, 2016.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Acknowledgments; Contents; Abstract; 1 Introduction; 1.1 Standardization of Short-Circuit Withstand Capability; 1.2 Thesis Objectives; 1.2.1 Current State of Science; 1.2.2 Buckling Analysis on Transformer Windings; 1.2.3 Characterization of Conductors; 1.2.4 Impact of Insulating Paper Aging; 2 Fundamentals; 2.1 Power Transformer Windings; 2.1.1 Winding Types; 2.1.2 Conductor Types; 2.1.3 Copper for Electric Applications; 2.2 Short-Circuit Considerations; 2.2.1 Short-Circuit Current; 2.2.2 Short-Circuit Forces; 2.2.3 Failures Modes; 2.3 Mechanics of Materials.
  • 2.3.1 Elastic Behavior of Materials2.3.2 Theory of Plasticity; 2.3.3 Ramberg-Osgood Equation; 2.3.4 Strain Rate and Temperature Dependency of Copper; 2.4 Method of Finite Element Analysis; 2.4.1 Magnetic Formulation; 2.4.2 Structural Mechanics Formulation; 2.4.3 Coupling of the Magnetic and Mechanical Field; 2.4.4 Eigenvalue Buckling Analysis; 3 Buckling Analysis; 3.1 Analytical Approach; 3.1.1 Bending Stiffness of Conductors; 3.1.2 Antisymmetric Buckling; 3.1.3 Symmetric Buckling; 3.1.4 Transition from Buckling to Pure Bending; 3.1.5 Involving Elastoplastic Properties.
  • 3.1.6 Dynamic Buckling Analysis3.1.6.1 Hydrodynamic Damping and Inertial Mass; 3.1.6.2 Governing Equation; 3.1.6.3 Mathieu Equation; 3.1.6.4 Stability Analysis; 3.2 Finite Element-Based Analysis; 3.2.1 Simplified CTC Model; 3.2.2 Strain Rate Estimation; 3.2.2.1 Elastic Vibration; 3.2.2.2 Elastoplastic Buckling; 3.2.3 Buckling of CTC Windings; 3.2.3.1 Geometry and FEA Setup; 3.2.3.2 Linear Analysis; 3.2.3.3 Nonlinear Analysis; 3.2.3.4 Modal Analysis; 4 Static Characterization of Conductors; 4.1 Testing Methods and Standards; 4.1.1 Tensile Test; 4.1.2 Three-Point Bending Test; 4.1.3 T-Peel Test.
  • 4.1.4 Overlap Shear Test4.2 Preliminary Investigations; 4.2.1 Copper Characterization; 4.2.2 Validation of Simplified CTC Model; 4.2.3 Oil Impregnation Effects; 4.3 Stiffness Contribution of Insulating Paper; 4.3.1 Measurement Results; 4.3.2 Equivalent Stiffness Evaluation; 4.4 Impact of Insulating Paper Aging; 4.4.1 Accelerated Aging Procedure; 4.4.2 Bending Test Results; 4.4.3 Insulating Paper Characterization; 4.4.4 Tensile and Bending Test Correlation; 4.4.5 FEA-Based Failure Analysis; 4.5 Characterization of Epoxy Bonded CTCs; 4.5.1 Test Results; 4.5.2 Adhesive Layer Parameterization.
  • 4.5.3 FEA Model Validation4.5.4 FEA Model for Bonded CTCs; 5 Dynamic Short-Circuit Forces Test Stand; 5.1 Design and Principal Functionality; 5.2 Deformation Measurement Systems; 5.2.1 Acceleration Sensors; 5.2.1.1 Immunity to Magnetic Fields; 5.2.1.2 Mounting to the Windings; 5.2.1.3 Signal Processing; 5.2.2 High-Speed Camera-Based Deformation Tracking; 5.2.2.1 Principal Functionality; 5.2.2.2 Marker Mounting and Image Calibration; 5.2.2.3 Displacement Calculation Algorithm; 5.2.3 Comparison of Both Systems; 5.3 Measurement Data Evaluation; 5.4 Experimental Results.