|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1003265414 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170909s2016 gw ob 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d MERUC
|d YDX
|d IDB
|d OCLCQ
|d EZ9
|d OCLCO
|d OCLCF
|d OCLCQ
|d LVT
|d OCLCQ
|d N$T
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1003255518
|a 1264795591
|
020 |
|
|
|a 3736983328
|
020 |
|
|
|a 9783736983328
|q (electronic bk.)
|
020 |
|
|
|z 9783736993327
|
029 |
1 |
|
|a AU@
|b 000073109782
|
035 |
|
|
|a (OCoLC)1003265414
|z (OCoLC)1003255518
|z (OCoLC)1264795591
|
050 |
|
4 |
|a TK2551
|b .G457 2016eb
|
082 |
0 |
4 |
|a 621.314
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Geißler, Daniel Hermann.
|
245 |
1 |
0 |
|a Short-Circuit Withstand Capability of Power Transformers.
|
260 |
|
|
|a Göttingen :
|b Cuvillier Verlag,
|c 2016.
|
300 |
|
|
|a 1 online resource (175 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Acknowledgments; Contents; Abstract; 1 Introduction; 1.1 Standardization of Short-Circuit Withstand Capability; 1.2 Thesis Objectives; 1.2.1 Current State of Science; 1.2.2 Buckling Analysis on Transformer Windings; 1.2.3 Characterization of Conductors; 1.2.4 Impact of Insulating Paper Aging; 2 Fundamentals; 2.1 Power Transformer Windings; 2.1.1 Winding Types; 2.1.2 Conductor Types; 2.1.3 Copper for Electric Applications; 2.2 Short-Circuit Considerations; 2.2.1 Short-Circuit Current; 2.2.2 Short-Circuit Forces; 2.2.3 Failures Modes; 2.3 Mechanics of Materials.
|
505 |
8 |
|
|a 2.3.1 Elastic Behavior of Materials2.3.2 Theory of Plasticity; 2.3.3 Ramberg-Osgood Equation; 2.3.4 Strain Rate and Temperature Dependency of Copper; 2.4 Method of Finite Element Analysis; 2.4.1 Magnetic Formulation; 2.4.2 Structural Mechanics Formulation; 2.4.3 Coupling of the Magnetic and Mechanical Field; 2.4.4 Eigenvalue Buckling Analysis; 3 Buckling Analysis; 3.1 Analytical Approach; 3.1.1 Bending Stiffness of Conductors; 3.1.2 Antisymmetric Buckling; 3.1.3 Symmetric Buckling; 3.1.4 Transition from Buckling to Pure Bending; 3.1.5 Involving Elastoplastic Properties.
|
505 |
8 |
|
|a 3.1.6 Dynamic Buckling Analysis3.1.6.1 Hydrodynamic Damping and Inertial Mass; 3.1.6.2 Governing Equation; 3.1.6.3 Mathieu Equation; 3.1.6.4 Stability Analysis; 3.2 Finite Element-Based Analysis; 3.2.1 Simplified CTC Model; 3.2.2 Strain Rate Estimation; 3.2.2.1 Elastic Vibration; 3.2.2.2 Elastoplastic Buckling; 3.2.3 Buckling of CTC Windings; 3.2.3.1 Geometry and FEA Setup; 3.2.3.2 Linear Analysis; 3.2.3.3 Nonlinear Analysis; 3.2.3.4 Modal Analysis; 4 Static Characterization of Conductors; 4.1 Testing Methods and Standards; 4.1.1 Tensile Test; 4.1.2 Three-Point Bending Test; 4.1.3 T-Peel Test.
|
505 |
8 |
|
|a 4.1.4 Overlap Shear Test4.2 Preliminary Investigations; 4.2.1 Copper Characterization; 4.2.2 Validation of Simplified CTC Model; 4.2.3 Oil Impregnation Effects; 4.3 Stiffness Contribution of Insulating Paper; 4.3.1 Measurement Results; 4.3.2 Equivalent Stiffness Evaluation; 4.4 Impact of Insulating Paper Aging; 4.4.1 Accelerated Aging Procedure; 4.4.2 Bending Test Results; 4.4.3 Insulating Paper Characterization; 4.4.4 Tensile and Bending Test Correlation; 4.4.5 FEA-Based Failure Analysis; 4.5 Characterization of Epoxy Bonded CTCs; 4.5.1 Test Results; 4.5.2 Adhesive Layer Parameterization.
|
505 |
8 |
|
|a 4.5.3 FEA Model Validation4.5.4 FEA Model for Bonded CTCs; 5 Dynamic Short-Circuit Forces Test Stand; 5.1 Design and Principal Functionality; 5.2 Deformation Measurement Systems; 5.2.1 Acceleration Sensors; 5.2.1.1 Immunity to Magnetic Fields; 5.2.1.2 Mounting to the Windings; 5.2.1.3 Signal Processing; 5.2.2 High-Speed Camera-Based Deformation Tracking; 5.2.2.1 Principal Functionality; 5.2.2.2 Marker Mounting and Image Calibration; 5.2.2.3 Displacement Calculation Algorithm; 5.2.3 Comparison of Both Systems; 5.3 Measurement Data Evaluation; 5.4 Experimental Results.
|
500 |
|
|
|a 5.4.1 Testing Method Validation.
|
504 |
|
|
|a Includes bibliographical references.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Electric transformers.
|
650 |
|
0 |
|a Transformers.
|
650 |
|
6 |
|a Transformateurs électriques.
|
650 |
|
7 |
|a transformers.
|2 aat
|
650 |
|
7 |
|a Electric transformers
|2 fast
|
758 |
|
|
|i has work:
|a Short-circuit withstand capability of power transformers (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGHDtBxtbKYfJvqQVhdQpX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Geißler, Daniel Hermann.
|t Short-Circuit Withstand Capability of Power Transformers.
|d Göttingen : Cuvillier Verlag, ©2016
|z 9783736993327
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5022911
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5022911
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2130593
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14785259
|
994 |
|
|
|a 92
|b IZTAP
|