Cargando…

Metaheuristics for intelligent electrical networks /

The optimisation tools are ubiquitous in modelling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyse and define new methodologies, able to combine performance and near-operational processing. Metaheuristics offer a range of solutions as efficie...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Héliodore, Frédéric (Autor), Nakib, Amir (Autor), Ismail, Boussaad (Autor), Ouchraa, Salma (Autor), Schmitt, Laurent (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Hoboken, NJ : ISTE, Ltd. ; Wiley, 2017.
Colección:Computer engineering series (London, England). Metaheuristics set ; 10.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1001287932
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 170817s2017 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d N$T  |d EBLCP  |d OCLCF  |d YDX  |d UMI  |d DG1  |d MERUC  |d MERER  |d UAB  |d OCLCQ  |d UPM  |d COO  |d OCLCQ  |d KSU  |d WYU  |d RECBK  |d U3W  |d OCLCQ  |d ESU  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1001379151  |a 1003645604 
020 |a 9781119136750  |q (electronic bk.) 
020 |a 111913675X  |q (electronic bk.) 
020 |a 9781119136736 
020 |a 1119136733 
020 |z 9781848218093 
020 |z 1848218095 
029 1 |a AU@  |b 000061502348 
029 1 |a CHBIS  |b 011150761 
029 1 |a CHNEW  |b 000969224 
029 1 |a CHVBK  |b 499166388 
029 1 |a GBVCP  |b 1014967228 
029 1 |a AU@  |b 000061349617 
035 |a (OCoLC)1001287932  |z (OCoLC)1001379151  |z (OCoLC)1003645604 
037 |a CL0500000891  |b Safari Books Online 
050 4 |a TK3105 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.319  |2 23 
049 |a UAMI 
245 0 0 |a Metaheuristics for intelligent electrical networks /  |c Frédéric Héliodore, Amir Nakib, Boussaad Ismail, Salma Ouchraa, Laurent Schmitt. 
264 1 |a London, UK :  |b ISTE, Ltd. ;  |a Hoboken, NJ :  |b Wiley,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer engineering series, Metaheuristics set ;  |v volume 10 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed August 29, 2017). 
505 0 |a Cover; Half-Title Page; Title Page; Copyright Page; Contents; Introduction; 1. Single Solution Based Metaheuristics; 1.1. Introduction; 1.2. The descent method; 1.3. Simulated annealing; 1.4. Microcanonical annealing; 1.5. Tabu search; 1.6. Pattern search algorithms; 1.6.1. The GRASP method; 1.6.2. Variable neighborhood search; 1.6.3. Guided local search; 1.6.4. Iterated local search; 1.7. Other methods; 1.7.1. The Nelder-Mead simplex method; 1.7.2. The noising method; 1.7.3. Smoothing methods; 1.8. Conclusion; 2. Population-based Methods; 2.1. Introduction; 2.2. Evolutionary algorithms. 
505 8 |a 2.2.1. Genetic algorithms2.2.2. Evolution strategies; 2.2.3. Coevolutionary algorithms; 2.2.4. Cultural algorithms; 2.2.5. Differential evolution; 2.2.6. Biogeography-based optimization; 2.2.7. Hybrid metaheuristic based on Bayesian estimation; 2.3. Swarm intelligence; 2.3.1. Particle Swarm Optimization; 2.3.2. Ant colony optimization; 2.3.3. Cuckoo search; 2.3.4. The firefly algorithm; 2.3.5. The fireworks algorithm; 2.4. Conclusion; 3. Performance Evaluation of Metaheuristics; 3.1. Introduction; 3.2. Performance measures; 3.2.1. Quality of solutions; 3.2.2. Computational effort. 
505 8 |a 3.2.3. Robustness3.3. Statistical analysis; 3.3.1. Data description; 3.3.2. Statistical tests; 3.4. Literature benchmarks; 3.4.1. Characteristics of a test function; 3.4.2. Test functions; 3.5. Conclusion; 4. Metaheuristics for FACTS Placement and Sizing; 4.1. Introduction; 4.2. FACTS devices; 4.2.1. The SVC; 4.2.2. The STATCOM; 4.2.3. The TCSC; 4.2.4. The UPFC; 4.3. The PF model and its solution; 4.3.1. The PF model; 4.3.2. Solution of the network equations; 4.3.3. FACTS implementation and network modification; 4.3.4. Formulation of FACTS placement problem as an optimization issue. 
505 8 |a 4.4. PSO for FACTS placement4.4.1. Solutions coding; 4.4.2. Binary particle swarm optimization; 4.4.3. Proposed Lévy-based hybrid PSO algorithm; 4.4.4. "Hybridization" of continuous and discrete PSO algorithms for application to the positioning and sizing of FACTS; 4.5. Application to the placement and sizing of two FACTS; 4.5.1. Application to the 30-node IEEE network; 4.5.2. Application to the IEEE 57-node network; 4.5.3. Significance of the modified velocity likelihoods method; 4.5.4. Influence of the upper and lower bounds on the velocity -> Vci of particles ci. 
505 8 |a 4.5.5. Optimization of the placement of several FACTS of different types (general case)4.6. Conclusion; 5. Genetic Algorithm-based Wind Farm Topology Optimization; 5.1. Introduction; 5.2. Problem statement; 5.2.1. Context; 5.2.2. Calculation of power flow in wind turbine connection cables; 5.3. Genetic algorithms and adaptation to our problem; 5.3.1. Solution encoding; 5.3.2. Selection operator; 5.3.3. Crossover; 5.3.4. Mutation; 5.4. Application; 5.4.1. Application to farms of 15-20 wind turbines; 5.4.2. Application to a farm of 30 wind turbines. 
520 8 |a The optimisation tools are ubiquitous in modelling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyse and define new methodologies, able to combine performance and near-operational processing. Metaheuristics offer a range of solutions as efficient as they are innovative. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Smart power grids. 
650 6 |a Réseaux électriques intelligents. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Smart power grids  |2 fast 
700 1 |a Héliodore, Frédéric,  |e author. 
700 1 |a Nakib, Amir,  |e author. 
700 1 |a Ismail, Boussaad,  |e author. 
700 1 |a Ouchraa, Salma,  |e author. 
700 1 |a Schmitt, Laurent,  |e author. 
758 |i has work:  |a Metaheuristics for intelligent electrical networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFRwVJvfWtHFBgD3cVd3kP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Metaheuristics for intelligent electrical networks.  |d London, UK : ISTE, Ltd. ; Hoboken, NJ : Wiley, 2017  |z 1848218095  |z 9781848218093  |w (OCoLC)908914278 
830 0 |a Computer engineering series (London, England).  |p Metaheuristics set ;  |v 10. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4983694  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28825583 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28826620 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4983694 
938 |a EBSCOhost  |b EBSC  |n 1575635 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31855689 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00744009 
938 |a YBP Library Services  |b YANK  |n 14844757 
938 |a YBP Library Services  |b YANK  |n 14753625 
938 |a YBP Library Services  |b YANK  |n 14777368 
994 |a 92  |b IZTAP