Cargando…

The essentials of data science : knowledge discovery using R /

"The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Williams, Graham J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL ; New York, NY : CRC Press, an imprint of the Taylor & Francis Group, [2017]
Colección:Chapman & Hall/CRC the R series (CRC Press)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn999643978
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nnannnunuuu
008 170805s2017 flu ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d N$T  |d OCLCF  |d OCLCQ  |d ERL  |d UKMGB  |d IDEBK  |d EZ9  |d U3W  |d AU@  |d CRCPR  |d UWW  |d OTZ  |d TYFRS  |d OCLCQ  |d K6U  |d OCLCQ  |d ZCU  |d OCLCQ  |d OCL  |d OCLCO  |d ELBRO  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
015 |a GBB7F4801  |2 bnb 
016 7 |a 018453834  |2 Uk 
019 |a 993964913  |a 998785607  |a 999407212  |a 999694753  |a 999701283  |a 1003932645  |a 1113388285  |a 1117823455 
020 |a 9781498740012  |q (electronic bk.) 
020 |a 1498740014  |q (electronic bk.) 
020 |a 9781351647496  |q (electronic bk.) 
020 |a 1351647490  |q (electronic bk.) 
020 |a 9781315151458  |q (electronic bk.) 
020 |a 1315151456  |q (electronic bk.) 
020 |z 9781138088634  |q (paperback  |q alkaline paper) 
020 |z 1138088633  |q (paperback  |q alkaline paper) 
020 |z 9781498740005  |q (hardback  |q alkaline paper) 
020 |z 1498740006  |q (hardback  |q alkaline paper) 
024 7 |a 10.1201/9781315151458  |2 doi 
029 1 |a AU@  |b 000061302216 
029 1 |a AU@  |b 000062367506 
029 1 |a CHBIS  |b 011433312 
029 1 |a CHVBK  |b 567525562 
029 1 |a UKMGB  |b 018453834 
029 1 |a AU@  |b 000069375581 
035 |a (OCoLC)999643978  |z (OCoLC)993964913  |z (OCoLC)998785607  |z (OCoLC)999407212  |z (OCoLC)999694753  |z (OCoLC)999701283  |z (OCoLC)1003932645  |z (OCoLC)1113388285  |z (OCoLC)1117823455 
037 |a 9781351647496  |b Ingram Content Group 
050 4 |a QA76.9.D32  |b W56 2017 
072 7 |a COM  |x 021000  |2 bisacsh 
072 7 |a COM  |2 ukslc 
082 0 4 |a 006.3/12  |2 23 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Williams, Graham J.,  |e author. 
245 1 4 |a The essentials of data science :  |b knowledge discovery using R /  |c Graham J. Williams. 
264 1 |a Boca Raton, FL ;  |a New York, NY :  |b CRC Press, an imprint of the Taylor & Francis Group,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (xviii, 322 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC the R series 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1 Data Science -- 1.1 Exercises -- Chapter 2 Introducing R -- 2.1 Tooling For R Programming -- 2.2 Packages and Libraries -- 2.3 Functions, Commands and Operators -- 2.4 Pipes -- 2.5 Getting Help -- 2.6 Exercises -- Chapter 3 Data Wrangling -- 3.1 Data Ingestion -- 3.2 Data Review -- 3.3 Data Cleaning -- 3.4 Variable Roles -- 3.5 Feature Selection -- 3.6 Missing Data -- 3.7 Feature Creation -- 3.8 Preparing the Metadata -- 3.9 Preparing for Model Building -- 3.10 Save the Dataset -- 3.11 A Template for Data Preparation -- 3.12 Exercises -- Chapter 4 Visualising Data -- 4.1 Preparing the Dataset -- 4.2 Scatter Plot -- 4.3 Bar Chart -- 4.4 Saving Plots to File -- 4.5 Adding Spice to the Bar Chart -- 4.6 Alternative Bar Charts -- 4.7 Box Plots -- 4.8 Exercises -- Chapter 5 Case Study: Australian Ports -- 5.1 Data Ingestion -- 5.2 Bar Chart: Value/Weight of Sea Trade -- 5.3 Scatter Plot: Throughput versus Annual Growth -- 5.4 Combined Plots: Port Calls -- 5.5 Further Plots -- 5.6 Exercises -- Chapter 6 Case Study: Web Analytics -- 6.1 Sourcing Data from CKAN -- 6.2 Browser Data -- 6.3 Entry Pages -- 6.4 Exercises -- Chapter 7 A Pattern for Predictive Modelling -- 7.1 Loading the Dataset -- 7.2 Building a Decision Tree Model -- 7.3 Model Performance -- 7.4 Evaluating Model Generality -- 7.5 Model Tuning -- 7.6 Comparison of Performance Measures -- 7.7 Save the Model to File -- 7.8 A Template for Predictive Modelling -- 7.9 Exercises -- Chapter 8 Ensemble of Predictive Models -- 8.1 Loading the Dataset -- 8.2 Random Forest -- 8.3 Extreme Gradient Boosting -- 8.4 Exercises -- Chapter 9 Writing Functions in R -- 9.1 Model Evaluation -- 9.2 Creating a Function. 
505 8 |a 9.3 Function for ROC Curves -- 9.4 Exercises -- Chapter 10 Literate Data Science -- 10.1 Basic LATEX Template -- 10.2 A Template for our Narrative -- 10.3 Including R Commands -- 10.4 Inline R Code -- 10.5 Formatting Tables Using Kable -- 10.6 Formatting Tables Using XTable -- 10.7 Including Figures -- 10.8 Add a Caption and Label -- 10.9 Knitr Options -- 10.10Exercises -- Chapter 11 R with Style -- 11.1 Why We Should Care -- 11.2 Naming -- 11.3 Comments -- 11.4 Layout -- 11.5 Functions -- 11.6 Assignment -- 11.7 Miscellaneous -- 11.8 Exercises -- Bibliography -- Index. 
520 |a "The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years' experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R's capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book."--Provided by publisher 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Big data. 
650 0 |a Computational intelligence. 
650 0 |a R (Computer program language) 
650 6 |a Données volumineuses. 
650 6 |a Intelligence informatique. 
650 6 |a R (Langage de programmation) 
650 7 |a COMPUTERS  |x Databases  |x General.  |2 bisacsh 
650 7 |a Computational intelligence  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Databases  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
758 |i has work:  |a The essentials of data science (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvPvKWvPRbkGmWcHvpbMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Williams, Graham J.  |t Essentials of Data Science: Knowledge Discovery Using R.  |d Philadelphia, PA : CRC Press, ©2017  |z 9781498740005 
830 0 |a Chapman & Hall/CRC the R series (CRC Press) 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4929754  |z Texto completo 
938 |a eLibro  |b ELBO  |n ELB141854 
938 |a CRC Press  |b CRCP  |n 9781498740005 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4929754 
938 |a EBSCOhost  |b EBSC  |n 1566000 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36922965 
938 |a Taylor & Francis  |b TAFR  |n 9781315151458 
938 |a YBP Library Services  |b YANK  |n 14737633 
938 |a YBP Library Services  |b YANK  |n 14732006 
994 |a 92  |b IZTAP