Cargando…

Atiyah-Singer index theorem : an introduction /

This monograph is a thorough introduction to the Atiyah-Singer index theorem for elliptic operators on compact manifolds without boundary. The main theme is only the classical index theorem and some of its applications, but not the subsequent developments and simplifications of the theory. The book...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mukherjee, Amiya (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Hindustan Book Agency, [2013]
Colección:Texts and readings in mathematics ; 69.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn998594928
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 170802s2013 ii a ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d COO  |d IOG  |d UAB  |d SNK  |d CAUOI  |d OCLCQ  |d CEF  |d OCLCQ  |d ESU  |d WYU  |d LVT  |d U3W  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 999481579 
020 |a 9789386279606  |q (electronic bk.) 
020 |a 9386279606  |q (electronic bk.) 
020 |z 9789380250540 
020 |z 9380250541 
024 7 |a 10.1007/978-93-86279-60-6  |2 doi 
029 1 |a AU@  |b 000060678357 
035 |a (OCoLC)998594928  |z (OCoLC)999481579 
050 4 |a QA614.92  |b .M854 2013eb 
082 0 4 |a 514.7/4  |2 23 
049 |a UAMI 
100 1 |a Mukherjee, Amiya,  |e author. 
245 1 0 |a Atiyah-Singer index theorem :  |b an introduction /  |c Amiya Mukherjee. 
264 1 |a New Delhi :  |b Hindustan Book Agency,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xii, 267 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Texts and readings in mathematics ;  |v 69 
504 |a Includes bibliographical references and index. 
505 0 |a 1. K-theory -- 2. Fredholm operators and Atiyah-Jänich theorem -- 3. Bott periodicity and Thom isomorphism -- 4. Pseudo-differential operators -- 5. Characteristic classes and Chern-Weil construction -- 6. Spin structure and Dirac operator -- 7. Equivariant k-theory -- 8. The index theorem -- 9. Cohomological formulation of the index theorem. 
588 0 |a Print version record. 
520 3 |a This monograph is a thorough introduction to the Atiyah-Singer index theorem for elliptic operators on compact manifolds without boundary. The main theme is only the classical index theorem and some of its applications, but not the subsequent developments and simplifications of the theory. The book is designed for a complete proof of the K -theoretic index theorem and its representation in terms of cohomological characteristic classes. In an effort to make the demands on the reader's knowledge of background materials as modest as possible, the author supplies the proofs of almost every result. The applications include Hirzebruch signature theorem, Riemann-Roch-Hirzebruch theorem, and the Atiyah-Segal-Singer fixed point theorem, etc. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Atiyah-Singer index theorem. 
650 0 |a Elliptic operators. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Fixed point theory. 
650 6 |a Théorème d'Atiyah-Singer. 
650 6 |a Opérateurs elliptiques. 
650 6 |a Variétés (Mathématiques) 
650 6 |a Théorème du point fixe. 
650 7 |a Atiyah-Singer index theorem  |2 fast 
650 7 |a Elliptic operators  |2 fast 
650 7 |a Fixed point theory  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
758 |i has work:  |a Atiyah-Singer index theorem (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFrkqmvDVCGt8PpJFCrvf3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Mukherjee, Amiya.  |t Atiyah-Singer index theorem.  |d New Delhi : Hindustan Book Agency, [2013]  |z 9380250541  |w (OCoLC)857404879 
830 0 |a Texts and readings in mathematics ;  |v 69. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5394695  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35779795 
938 |a YBP Library Services  |b YANK  |n 14735382 
994 |a 92  |b IZTAP