Exotic Cluster Structures on SL_{n}
This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfe...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Documento de Gobierno Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2017.
|
Colección: | Memoirs of the American Mathematical Society.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on \mathcal{G} corresponds to a cluster structure in \mathcal{O}(\mathcal{G}). The authors have shown before that this conjecture holds for any \mathcal{G} in the case of the standard Poisson-Lie structure and for all Belavin-Drinfeld classes in SL_n, n<5. |
---|---|
Descripción Física: | 1 online resource (106 pages) |
Bibliografía: | Includes bibliographical references (pages 93-94). |
ISBN: | 9781470436391 1470436396 |