Cargando…

The Role of Advection in a Two-Species Competition Model.

The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Averill, Isabel
Otros Autores: Lam, King-Yeung, Lou, Yuan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn993776355
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170715s2017 riu ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d IDB  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470436117 
020 |a 1470436116 
035 |a (OCoLC)993776355 
050 4 |a QA433  |b .A947 2017eb 
082 0 4 |a 515.63 
049 |a UAMI 
100 1 |a Averill, Isabel. 
245 1 4 |a The Role of Advection in a Two-Species Competition Model. 
260 |a Providence :  |b American Mathematical Society,  |c 2017. 
300 |a 1 online resource (118 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v v. 245 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction: The role of advection; Chapter 2. Summary of main results; 2.1. Existence of positive steady states of (2.1); 2.2. Local stability of semi-trivial steady states; 2.3. Global bifurcation results; Chapter 3. Preliminaries; 3.1. Abstract Theory of Monotone Dynamical Systems; 3.2. Asymptotic behavior of and as →0; Chapter 4. Coexistence and classification of -- plane; 4.1. Coexistence: Proof of Theorem 2.2; 4.2. Classification of -- plane: Proof of Theorem 2.5; 4.3. Limiting behavior of ; Chapter 5. Results in ℛ₁: Proof of Theorem 2.10 
505 8 |a 5.1. The case when ( , )∈ℛ₁ and ( )/( ) is sufficiently large5.2. The one-dimensional case; 5.3. Open problems; Chapter 6. Results in ℛ₂: Proof of Theorem 2.11; 6.1. Proof of Theorem 2.11(b); 6.2. Open problems; Chapter 7. Results in ℛ₃: Proof of Theorem 2.12; 7.1. Stability result of ( ,0) for small ; 7.2. Stability result of (0, ); 7.3. Open problems; Chapter 8. Summary of asymptotic behaviors of _{*} and *; 8.1. Asymptotic behavior of *; 8.2. Asymptotic behavior of _{*}; Chapter 9. Structure of positive steady states via Lyapunov-Schmidt procedure 
505 8 |a Chapter 10. Non-convex domainsChapter 11. Global bifurcation results; 11.1. General bifurcation theorems; 11.2. Bifurcation result in ℛ₁; 11.3. Bifurcation result in ℛ₃; 11.4. Bifurcation result in ℛ₂; 11.5. Uniqueness result for large , ; Chapter 12. Discussion and future directions; Appendix A. Asymptotic behavior of and ᵤ; A.1. Asymptotic behavior of when →∞; A.2. Asymptotic behavior of and its derivatives as →0; A.3. Asymptotic behavior of ᵥ as , →∞; Appendix B. Limit eigenvalue problems as , →0; Appendix C. Limiting eigenvalue problem as →∞; Acknowledgements 
504 |a BibliographyBack Cover. 
520 |a The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Scalar field theory. 
650 0 |a Bifurcation theory. 
650 0 |a Differential equations, Partial. 
650 4 |a Scalar field theory. 
650 6 |a Champs scalaires. 
650 6 |a Théorie de la bifurcation. 
650 6 |a Équations aux dérivées partielles. 
650 7 |a scalars.  |2 aat 
650 7 |a Bifurcation theory  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Scalar field theory  |2 fast 
700 1 |a Lam, King-Yeung. 
700 1 |a Lou, Yuan. 
758 |i has work:  |a The role of advection in a two-species competition model (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFy77D4pyVjyyKJVhhvBvb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Averill, Isabel.  |t Role of Advection in a Two-Species Competition Model: A Bifurcation Approach.  |d Providence : American Mathematical Society, ©2017  |z 9781470422028 
830 0 |a Memoirs of the American Mathematical Society. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908277  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4908277 
994 |a 92  |b IZTAP