Cargando…

Magnetoelectric Polymer-Based Composites : Fundamentals and Applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lanceros-M?ndez, Senentxu
Otros Autores: Martins, Pedro
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface and Acknowledgments
  • Chapter 1 Magnetoelectric Effect of Functional Materials: Theoretical Analysis, Modeling, and Experiment
  • 1.1 Introduction of Magnetoelectric Effect
  • 1.1.1 Single-Phase Magnetoelectric Materials
  • 1.1.2 Multiphase Materials
  • 1.2 Applications of Magnetoelectric Effect
  • 1.2.1 Magnetoelectric Sensors
  • 1.2.2 Magnetoelectric Transducer
  • 1.2.3 Magnetoelectric Microwave Devices
  • 1.3 Magnetoelectric Effect of Piezoelectric Ceramic
  • 1.4 Magnetoelectric Effect in Insulating Polymers
  • 1.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 2 Materials Selection, Processing, and Characterization Technologies
  • 2.1 Introduction
  • 2.2 Materials Selection and Processing
  • 2.2.1 Polymer as the Piezoelectric/Ferroelectric Phase
  • 2.2.2 Piezoelectric Polymer as the Matrix
  • 2.2.3 Non-piezoelectric Polymer as the Active Matrix
  • 2.2.4 Polymer as the Binder
  • 2.3 Characterization Technologies
  • 2.3.1 Ferroelectric and Piezoelectric Characterization
  • 2.3.1.1 Piezoelectric Characterization
  • 2.3.1.2 Ferroelectric Characterization
  • 2.3.2 Magnetostrictive and Magnetism Characterization
  • 2.3.2.1 Magnetism Measurement
  • 2.3.2.2 Magnetostriction Measurement
  • 2.3.3 Characterization of Magnetoelectric Coupling
  • 2.3.3.1 Direct Magnetoelectric Coupling
  • 2.3.3.2 Converse Magnetoelectric Coupling
  • 2.4 Concluding Remarks
  • Acknowledgments
  • References
  • Chapter 3 Types of Polymer-Based Magnetoelectric Materials
  • 3a Laminates
  • 3a.1 Introduction
  • 3a.2 Laminated Magnetoelectric Composites
  • 3a.3 Piezoelectric Phase for Magnetoelectric Laminates
  • 3a.3.1 PVDF and Its Copolymers
  • 3a.3.2 Diamines
  • 3.4a Magnetostrictive Phase for Magnetoelectric Laminates
  • 3a.4.1 Metglas
  • 3a.4.2 VITROVAC
  • 3a.4.3 Terfenol-D.
  • 3.5a Bonding Agent for Magnetoelectric Laminates
  • 3a.6 Structures for Magnetoelectric Laminates
  • 3a.7 Limitations and Remaining Challenges
  • Acknowledgments
  • References
  • 3b Polymer-Based Magnetoelectric Composites: Polymer as a Binder
  • 3b.1 Introduction
  • 3b.2 Polymer-Based Tb1−xDyxFe2−y by Magnetic Warm Compaction
  • 3b.2.1 Experiment for Magnetic Warm Compaction
  • 3b.2.2 Results and Discussion of Magnetic Warm Compaction
  • 3b.2.3 Conclusions for Magnetic Warm Compaction
  • 3b.3 Multifaceted Magnetoelectric Composites
  • 3b.3.1 Experiment for Multifaceted Magnetoelectric Composites
  • 3b.3.2 Results and Discussion for Multifaceted Magnetoelectric Composites
  • 3b.3.3 Conclusions for Multifaceted Magnetoelectric Composites
  • 3b.4 Bonded Cylindrical Composites
  • 3b.4.1 Experiment for Bonded Cylindrical Composites
  • 3b.4.2 Results and Discussion for Bonded Cylindrical Composites
  • 3b.4.3 Conclusions for Bonded Cylindrical Composites
  • 3b.5 Multi-electrode Cylinder Composites
  • 3b.5.1 Experiment for Multi-electrode Cylinder Composites
  • 3b.5.2 Results and Discussion for Multi-electrode Cylinder Composites
  • 3b.5.3 Conclusions for Multi-electrode Cylinder Composites
  • 3b.6 Polymer Content and Particle Size Effects
  • 3b.6.1 Experiment for Polymer Content and Particle Size Effects
  • 3b.6.2 Results and Discussion for Polymer Content and Particle Size Effects
  • 3b.6.3 Conclusions for Polymer Content and Particle Size Effects
  • Acknowledgments
  • References
  • Chapter 3c Poly(vinylidene fluoride)-Based Magnetoelectric Polymer Nanocomposite Films
  • 3c.1 Introduction
  • 3c.2 Ferroelectric Polymers
  • 3c.2.1 Poly(Vinylidene Fluoride)
  • 3c.2.2 Crystallization of -Phase PVDF
  • 3c.2.2.1 By Solvent
  • 3c.2.2.2 By the Temperature
  • 3c.2.2.3 Electric Poling on PVDF
  • 3c.3 The Selection of Magnetic Nanofillers.
  • 3c.4 Experimental Methods
  • 3c.4.1 Materials
  • 3c.4.2 Synthesis of Magnetic Nanoparticles
  • 3c.4.3 Fabrication of ME Polymer Nanocomposites
  • 3c.5 Characterization
  • 3c.5.1 IR Vibrational Studies
  • 3c.5.2 Surface Analysis on the Composites
  • 3c.5.3 Magnetic Studies on MPNCs
  • 3c.5.4 Correlation of F() with Ferroelectric Parameters
  • 3c.5.5 Magnetoelectric Effect in MPNCs
  • 3c.6 Summary
  • 3c.7 Future Directions
  • Acknowledgments
  • References
  • Chapter 4 Low-Dimensional Polymer-Based Magnetoelectric Structures
  • 4.1 Introduction
  • 4.2 Magnetoelectric Spheres
  • 4.3 Magnetoelectric Fibers
  • 4.4 Magnetoelectric Membranes
  • 4.5 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 5 Design of Magnetostrictive Nanoparticles for Magnetoelectric Composites
  • 5.1 Introduction
  • 5.1.1 Magnetoelectric Composites
  • 5.1.2 Magnetostriction and Magnetostrictive Materials
  • 5.1.3 Ferromagnetic Ferrites
  • 5.1.4 Ferroelectric Perovskites
  • 5.2 Synthesis Approaches to Produce Magnetostrictive Nanoparticles for Magnetoelectric Composites
  • 5.2.1 Top-Down Production Approaches
  • 5.2.1.1 Mechanosynthesis or Mechanical Attrition
  • 5.2.1.2 Mechanical Alloying
  • 5.2.1.3 Inert-Gas Condensation Approach
  • 5.2.2 Bottom-Up Production Approaches
  • 5.2.2.1 Solid-State Reaction
  • 5.2.2.2 Pyrolysis
  • 5.2.2.3 Wet-Chemical Approaches
  • 5.3 Summary and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 6 Applications of Polymer-Based Magnetoelectric Materials
  • 6a Sensors, Actuators, Antennas, and Memories
  • 6a.1 Introduction
  • 6a.2 Polymer-Based Magnetoelectric Sensors
  • 6a.3 Polymer-Based Magnetoelectric Actuators
  • 6a.4 Polymer-Based Magnetoelectric Antennas
  • 6a.5 Polymer-Based Magnetoelectric Memories
  • 6a.6 Opportunities, Limitations, and Remaining Challenges
  • Acknowledgments
  • References.
  • 6b Magnetoelectric Composites for Bionics Applications
  • 6b.1 Introduction
  • 6b.2 Bionics
  • 6b.2.1 Implantable Electrode Devices
  • 6b.2.2 Organic Electrode Materials
  • 6b.2.3 New Opportunities for Advanced Electrical Stimulation
  • 6b.3 Cell Interactions and Electrical Stimulation
  • 6b.3.1 Synthetic Polymer-Based ME
  • 6b.3.2 Nanostructured and Nanoscale ME Materials
  • 6b.3.3 ME Concept for Electrical Stimulation of Cells
  • 6b.4 Future Biomaterials for ME Composites
  • 6b.4.1 Piezoelectric DNA, Proteins, and Microorganisms
  • 6b.4.2 ME Biopolymers: Cellulose
  • 6b.5 Characterization Tools for Nanoscale ME
  • 6b.5.1 Piezoresponse Force Microscopy (PFM)
  • 6b.5.2 Bio-Atomic Force Microscopy (Bio-AFM)
  • Acknowledgments
  • References
  • 6c Energy Harvesting
  • 6c.1 Introduction
  • 6c.2 Magnetoelectric Composites for Energy Harvesting
  • 6c.2.1 Magnetostrictive Effect in Ferromagnetic Materials
  • 6c.2.2 Piezoelectricity in Polymers
  • 6c.2.3 Key Parameters, Equations, and Figures of Merit
  • 6c.2.4 Magnetoelectric Effect in Piezoelectric-Ferromagnetic Composites
  • 6c.3 Energy-Harvesting Devices Based on Magnetoelectric Composites
  • 6c.4 Conclusion
  • References
  • 6d High-Temperature Polymers for Magnetoelectric Applications
  • 6d.1 Introduction
  • 6d.2 Types of Piezoelectric Polymers
  • 6d.2.1 Piezocomposites
  • 6d.2.2 Ferroelectrets
  • 6d.2.3 Bulk Piezoelectric Polymers
  • 6d.2.3.1 Semicrystalline Piezoelectric Polymers
  • 6d.2.3.2 Amorphous Piezoelectric Polymers
  • 6d.3 ME Effect Using Piezoelectric Polyimides
  • 6d.4 Summary and Conclusions
  • References
  • Chapter 7 Open Questions, Challenges, and Perspectives
  • References
  • Index
  • EULA.