Cargando…

Exposition by Emil Artin.

Emil Artin was one of the great mathematicians of the twentieth century. He had the rare distinction of having solved two of the famous problems posed by David Hilbert in 1900. He showed that every positive definite rational function of several variables was a sum of squares. He also discovered and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rosen, Michael
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2006.
Colección:History of mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn993762824
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170715s2006 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
020 |a 9781470438975 
020 |a 1470438976 
035 |a (OCoLC)993762824 
050 4 |a QA247.A782 2006 
082 0 4 |a 510.92 
049 |a UAMI 
100 1 |a Rosen, Michael. 
245 1 0 |a Exposition by Emil Artin. 
260 |a Providence :  |b American Mathematical Society,  |c 2006. 
300 |a 1 online resource (359 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a History of Mathematics ;  |v v. 30 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Contents; Photos; Credits and acknowledgments; Introduction; Books by Emil Artin; The Gamma Function; Galois Theory; Theory of Algebraic Numbers; Papers by Emil Artin; Axiomatic characterization of fields by the product formula for valuations; A note on axiomatic characterization of fields; A characterization of the field of real algebraic numbers; The algebraic construction of real fields; A characterization of real closed fields; The theory of braids; Theory of braids; On the theory of complex functions; A proof of the Krein-Milman theorem. 
500 |a The influence of J.H.M. Wedderburn on the development of modern algebraBack Cover. 
520 |a Emil Artin was one of the great mathematicians of the twentieth century. He had the rare distinction of having solved two of the famous problems posed by David Hilbert in 1900. He showed that every positive definite rational function of several variables was a sum of squares. He also discovered and proved the Artin reciprocity law, the culmination of over a century and a half of progress in algebraic number theory. Artin had a great influence on the development of mathematics in his time, both by means of his many contributions to research and by the high level and excellence of his teaching a. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algebraic fields. 
650 0 |a Galois theory. 
650 0 |a Gamma functions. 
650 0 |a Algebraic stacks. 
650 6 |a Corps algébriques. 
650 6 |a Théorie de Galois. 
650 6 |a Fonctions gamma. 
650 7 |a Algebraic stacks  |2 fast 
650 7 |a Algebraic fields  |2 fast 
650 7 |a Galois theory  |2 fast 
650 7 |a Gamma functions  |2 fast 
776 0 8 |i Print version:  |a Rosen, Michael.  |t Exposition by Emil Artin: A Selection.  |d Providence : American Mathematical Society, ©2006  |z 9780821841723 
830 0 |a History of mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908578  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4908578 
994 |a 92  |b IZTAP