Cargando…

Locally analytic vectors in representations of locally p-adic analytic groups /

The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic rep...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Emerton, Matthew (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; volume 248, no. 1175.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn993440754
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 170711t20172017riua ob 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCO  |d GZM  |d YDX  |d EBLCP  |d COO  |d COD  |d LEAUB  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781470440527  |q (online) 
020 |a 1470440520  |q (online) 
020 |z 9780821875629  |q (alk. paper) 
020 |z 0821875620  |q (alk. paper) 
029 1 |a AU@  |b 000062342860 
035 |a (OCoLC)993440754 
050 4 |a QA241  |b .E54 2017 
082 0 4 |a 512.7/4  |2 23 
049 |a UAMI 
100 1 |a Emerton, Matthew,  |e author. 
245 1 0 |a Locally analytic vectors in representations of locally p-adic analytic groups /  |c Matthew Emerton. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (iv, 158 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 248, number 1175 
588 0 |a Print version record. 
500 |a "Volume 248, number 1175 (first of 5 numbers), July 2017." 
504 |a Includes bibliographical references (pages 157-158). 
505 0 |a Cover; Title page; Introduction; 0.1. Locally analytic vectors and locally analytic representations; 0.2. The organization of the memoir; 0.3. Terminology, notation, and conventions; Chapter 1. Non-archimedean functional analysis; 1.1. Functional analytic preliminaries; 1.2. Fréchet-Stein algebras; Chapter 2. Non-archimedean function theory; 2.1. Continuous rigid analytic, and locally analytic functions; 2.2. Distributions; 2.3. Change of field; Chapter 3. Continuous, analytic, and locally analytic vectors; 3.1. Regular representations; 3.2. The orbit map and continuous vectors 
505 8 |a 3.3. Analytic vectors3.4. Analytic vectors continued; 3.5. Locally analytic vectors; 3.6. Analytic and locally analytic representations; Chapter 4. Smooth, locally finite, and locally algebraic vectors; 4.1. Smooth and locally finite vectors and representations; 4.2. Locally algebraic vectors and representations; Chapter 5. Rings of distributions; 5.1. Frobenius reciprocity and group rings of distributions; 5.2. Completions of universal enveloping algebras; 5.3. Rings of locally analytic distributions are Fréchet-Stein algebras; Chapter 6. Admissible locally analytic representations 
505 8 |a 6.1. Admissible locally analytic representations6.2. Strongly admissible locally analytic representations and admissible continuous representations; 6.3. Admissible smooth and admissible locally algebraic representations; 6.4. Essentially admissible locally analytic representations; 6.5. Invariant lattices; Chapter 7. Representations of certain product groups; 7.1. Strictly smooth representations; 7.2. Extensions of notions of admissibility for representations of certain product groups; Bibliography; Back Cover 
520 |a The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various "radii of analyticity"). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoi. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a p-adic analysis. 
650 0 |a p-adic groups. 
650 0 |a Representations of groups. 
650 0 |a Geometry, Analytic. 
650 6 |a Analyse p-adique. 
650 6 |a Groupes p-adiques. 
650 6 |a Représentations de groupes. 
650 6 |a Géométrie analytique. 
650 7 |a Geometry, Analytic  |2 fast 
650 7 |a p-adic analysis  |2 fast 
650 7 |a p-adic groups  |2 fast 
650 7 |a Representations of groups  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
776 0 8 |i Print version:  |z 9780821875629  |w (DLC) 2017015822  |w (OCoLC)982436442 
830 0 |a Memoirs of the American Mathematical Society ;  |v volume 248, no. 1175. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4940241  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445092 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4940241 
938 |a YBP Library Services  |b YANK  |n 14744565 
994 |a 92  |b IZTAP