Special values of the hypergeometric series /
In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hyper...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2017.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1177. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Chapter 1. Introduction; Chapter 2. Preliminaries; 2.1. Contiguity operators; 2.2. Degenerate relations; 2.3. A complete system of representatives of \\Z³; Chapter 3. Derivation of special values; 3.1. Example 1: (,)=(0,1,1); 3.2. Example 2: (,)=(1,2,2); 3.3. Example 3: (,)=(1,2,3); Chapter 4. Tables of special values; 4.1. =1; 4.2. =2; 4.3. =3; 4.4. =4; 4.5. =5; 4.6. =6; Appendix A. Some hypergeometric identities for generalized hypergeometric series and Appell-Lauricella hypergeometric series
- A.1. Some examples for generalized hypergeometric seriesA. 2. Some examples for Appell-Lauricella hypereometric series; Acknowledgments; Bibliography; Back Cover