The rewiring brain : a computational approach to structural plasticity in the adult brain /
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, n...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London ; San Diego, CA :
Academic Press,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; The Rewiring Brain; Copyright Page; Contents; List of Contributors; Editorial; 1 Introduction; 2 Experimental Background; 3 Homeostatic Structural Plasticity; 4 Structural Plasticity and Connectivity; 5 Structural Plasticity and Learning and Memory; 6 Neurogenesis-Related Structural Plasticity; 7 Structural Plasticity and Pathology; 8 Outlook; References; I. Experimental Background; 1 Structural Plasticity and Cortical Connectivity; 1 Introduction; 2 The Role of Structural Synaptic Plasticity in Hebb's Theory of Cell Assemblies.
- 3 Structural Plasticity Following Enriched Experience4 Structural Plasticity Following Sensory Deprivation or Stimulation; 5 Structural Plasticity in Learning and Memory; 6 Structural Plasticity and Long-Term Functional Synaptic Plasticity; 7 Activity-Dependent and -Independent Structural Synaptic Plasticity; 8 Structural Plasticity and Cortical Connectivity; 8.1 Large-Scale Structural Plasticity; 8.2 Microscopic Structural Plasticity and Cortical Connectivity; 8.3 Mechanisms of Microscopic Structural Plasticity Influencing Cortical Connectivity; 9 Future Perspectives; Acknowledgments.
- 4 Dendritic Arbor Remodeling5 Dendritic Spine Plasticity; 6 Perspectives and Future Directions; 6.1 Technological Developments; 6.2 Minimizing the Dark Side of Structural Plasticity Through Intelligent Intervention; 6.3 Computational Modeling Studies; References; 4 Is Lesion-Induced Synaptic Rewiring Driven by Activity Homeostasis?; 1 Introduction; 2 Current View and Limitations; 2.1 Current View; 2.2 Limitations; 3 Homeostatic Structural Plasticity; 3.1 Hypothesis; 3.2 Expectations; 4 In Vitro Indications for Homeostatic Structural Plasticity; 4.1 Dendritic Spines.
- 4.2 Dendrite and Axon Outgrowth4.3 Minimum Activity for Spine Formation and Neurite Outgrowth; 5 In Vivo Indications for Homeostatic Structural Plasticity; 5.1 Visual Cortex; 5.2 Barrel Cortex; 5.3 Stroke; 6 Experimental Testing of Homeostatic Structural Plasticity; 6.1 Growth Curves; 6.2 Activity Restoration; 7 Discussion; 7.1 Relation to Other Forms of Plasticity; 7.2 Cortical Remapping; 7.3 Maladaptive Responses; 7.4 Neurodegeneration; 7.5 Neurological Therapy; 7.6 Computational Modeling; 8 Conclusion; References; II. Homeostatic Structural Plasticity.