Primes and Knots.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2006.
|
Colección: | Contemporary Mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Categorification of the skein module of tangles
- The double shuffle relations for p-adic multiple zeta values
- Galois p-groups unramified at p
- A survey
- On capitulation theorems for infinite groups
- Multiple zeta values and Grothendieck-TeichmÃ?ller groups
- Asymptotics of q-difference equations
- 1. Introduction
- 1.1. The goal
- 1.2. The colored Jones function
- 1.3. The Hyperbolic Volume Conjecture
- 1.4. q-difference equations
- 1.5. Asymptotics of differential equations with a parameter
- 1.6. Asymptotics of difference equations1.7. Asymptotics of difference equations with a parameter
- 1.8. Statement of the results
- 1.9. What's next?
- 1.10. Acknowledgement
- 2. Ñ?-difference equations
- 2.1. Ñ?-difference equations
- 2.2. Converting q-difference equations to Ñ?-difference equations
- 3. Some linear algebra
- 4. Existence of formal solutions
- 4.1. An alternative formal series
- 5. Proof of Theorem 3
- 5.1. Existence of a solution corresponding to the eigenvalue of maximum magnitude
- 5.2. A reduction to an Ñ?-difference equation of smaller degree5.3. The solutions form a locally fundamental set
- 6. Regular solutions and their asymptotics
- 6.1. Regular solutions to Ñ?-difference equations
- 6.2. Asymptotics of regular solutions of Ñ?-difference equations
- 6.3. Asymptotics of regular solutions of q-difference equations
- 7. Applications to Quantum Topology
- 7.1. The A-polynomial of a knot and its noncommutative version
- 7.2. Examples: The 31 and 41 knots
- References
- The mapping class group acts reducibly on SU(n)-character varietiesPro-p link groups and p-homology groups
- Introduction
- 1. Pro-p completion of a link group
- 2. p-adic Milnor invariants
- 3. Completed Alexander modules
- 4. Galois module structure of the p-homology group of a p-fold cyclic branched cover
- 5. Iwasawa type formulas for the p-homology groups of pm-fold cyclic branched covers
- A quantum introduction to knot theory
- Classical knot invariants and elementary number theory
- Harmonic and equianharmonic equations in the Grothendieck-TeichmÃ?ller group, IIOn p-adic properties of the Witten-Reshetikhin-Turaev invariant
- Seiberg-Witten integrable systems and periods of rational elliptic surfaces
- On the finiteness of various Galois representations
- Some new-type equations in the Grothendieck-TeichmÃ?ller group arising from geometry of Mo,5