Cargando…

Banach, Fréchet, Hilbert and Neumann spaces /

This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simon, Jacques C. H. (Jacques Charles Henri), 1945-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : John Wiley & Sons, Incorporated, 2016.
Colección:Analysis for PDEs set ; volume 1.
Mathematics and statistics series (ISTE)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn990550001
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170624s2016 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d CUY  |d MERUC  |d OCLCF  |d ICG  |d ZCU  |d OCLCO  |d OCLCQ  |d DKC  |d TXI  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 990019533 
020 |a 9781119426530 
020 |a 1119426537 
020 |z 9781786300096 
020 |z 1786300095 
029 1 |a AU@  |b 000062360103 
035 |a (OCoLC)990550001  |z (OCoLC)990019533 
050 4 |a QA320  |b .S566 2017 
082 0 4 |a 515.732 
049 |a UAMI 
100 1 |a Simon, Jacques C. H.  |q (Jacques Charles Henri),  |d 1945-  |1 https://id.oclc.org/worldcat/entity/E39PCjMcWhK7PqYkCBjfCRGfv3 
245 1 0 |a Banach, Fréchet, Hilbert and Neumann spaces /  |c Jacques Simon. 
264 1 |a London :  |b John Wiley & Sons, Incorporated,  |c 2016. 
300 |a 1 online resource (xviii, 347 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics and statistics series (ISTE) 
490 1 |a Analysis for PDEs set ;  |v volume 1 
504 |a Includes bibliographical references (pages 325-329), cited author index, and index. 
505 0 0 |t Introduction --  |t Familiarization with semi-normed spaces --  |t Notations --  |t Prerequisites --  |g Part 1.  |t Semi-normed spaces ;  |t Semi-normed spaces --  |t Comparison of semi-normed spaces --  |t Banach, Fréchet and Neumann spaces --  |t Hilbert spaces --  |t Product, intersection, sum and quotient of spaces --  |g Part 2.  |t Continuous mappings ;  |t Continuous mappings --  |t Images of sets under continuous mappings --  |t Properties of mappings in metrizable spaces --  |t Extension of mappings, equicontinuity --  |t Compactness in mapping spaces --  |t Spaces of linear or multilinear mappings --  |g Part 3.  |t Weak topologies ;  |t Duality --  |t Dual of a subspace --  |t Weak topology --  |t Properties of sets for the weak topology --  |t Reflexivity --  |t Extractable spaces --  |g Part 4.  |t Differential calculus ;  |t Differentiable mappings --  |t Differentiation of multivariable mappings --  |t Successive differentiations --  |t Derivation of functions of one real variable. 
520 |a This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable spaces. The author presents the main properties of these spaces, which are useful for the construction of Lebesgue and Sobolev distributions with real or vector values and for solving partial differential equations. Differential calculus is also extended to semi-normed spaces. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students - doctoral students, postgraduate students - engineers and researchers without restricting or generalizing the results. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Banach spaces. 
650 0 |a Fréchet spaces. 
650 0 |a Hilbert space. 
650 0 |a Normed linear spaces. 
650 0 |a Von Neumann algebras. 
650 0 |a Differentiable mappings. 
650 0 |a Mappings (Mathematics) 
650 0 |a Topology. 
650 6 |a Espaces de Banach. 
650 6 |a Espaces de Fréchet. 
650 6 |a Espace de Hilbert. 
650 6 |a Espaces linéaires normés. 
650 6 |a Algèbres de Von Neumann. 
650 6 |a Applications différentiables. 
650 6 |a Applications (Mathématiques) 
650 6 |a Topologie. 
650 7 |a Von Neumann algebras  |2 fast 
650 7 |a Topology  |2 fast 
650 7 |a Normed linear spaces  |2 fast 
650 7 |a Mappings (Mathematics)  |2 fast 
650 7 |a Hilbert space  |2 fast 
650 7 |a Fréchet spaces  |2 fast 
650 7 |a Differentiable mappings  |2 fast 
650 7 |a Banach spaces  |2 fast 
776 0 8 |i Print version:  |a Simon, Jacques C.H. (Jacques Charles Henri), 1945-  |t Banach, Fréchet, Hilbert and Neumann spaces.  |d London : John Wiley & Sons, Incorporated, ©2016  |z 9781786300096 
830 0 |a Analysis for PDEs set ;  |v volume 1. 
830 0 |a Mathematics and statistics series (ISTE) 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4875241  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4875241 
938 |a YBP Library Services  |b YANK  |n 14561004 
994 |a 92  |b IZTAP