Banach, Fréchet, Hilbert and Neumann spaces /
This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | Analysis for PDEs set ;
volume 1. Mathematics and statistics series (ISTE) |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_ocn990550001 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 170624s2016 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d YDX |d OCLCQ |d CUY |d MERUC |d OCLCF |d ICG |d ZCU |d OCLCO |d OCLCQ |d DKC |d TXI |d OCLCQ |d OCL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 990019533 | ||
020 | |a 9781119426530 | ||
020 | |a 1119426537 | ||
020 | |z 9781786300096 | ||
020 | |z 1786300095 | ||
029 | 1 | |a AU@ |b 000062360103 | |
035 | |a (OCoLC)990550001 |z (OCoLC)990019533 | ||
050 | 4 | |a QA320 |b .S566 2017 | |
082 | 0 | 4 | |a 515.732 |
049 | |a UAMI | ||
100 | 1 | |a Simon, Jacques C. H. |q (Jacques Charles Henri), |d 1945- |1 https://id.oclc.org/worldcat/entity/E39PCjMcWhK7PqYkCBjfCRGfv3 | |
245 | 1 | 0 | |a Banach, Fréchet, Hilbert and Neumann spaces / |c Jacques Simon. |
264 | 1 | |a London : |b John Wiley & Sons, Incorporated, |c 2016. | |
300 | |a 1 online resource (xviii, 347 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and statistics series (ISTE) | |
490 | 1 | |a Analysis for PDEs set ; |v volume 1 | |
504 | |a Includes bibliographical references (pages 325-329), cited author index, and index. | ||
505 | 0 | 0 | |t Introduction -- |t Familiarization with semi-normed spaces -- |t Notations -- |t Prerequisites -- |g Part 1. |t Semi-normed spaces ; |t Semi-normed spaces -- |t Comparison of semi-normed spaces -- |t Banach, Fréchet and Neumann spaces -- |t Hilbert spaces -- |t Product, intersection, sum and quotient of spaces -- |g Part 2. |t Continuous mappings ; |t Continuous mappings -- |t Images of sets under continuous mappings -- |t Properties of mappings in metrizable spaces -- |t Extension of mappings, equicontinuity -- |t Compactness in mapping spaces -- |t Spaces of linear or multilinear mappings -- |g Part 3. |t Weak topologies ; |t Duality -- |t Dual of a subspace -- |t Weak topology -- |t Properties of sets for the weak topology -- |t Reflexivity -- |t Extractable spaces -- |g Part 4. |t Differential calculus ; |t Differentiable mappings -- |t Differentiation of multivariable mappings -- |t Successive differentiations -- |t Derivation of functions of one real variable. |
520 | |a This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable spaces. The author presents the main properties of these spaces, which are useful for the construction of Lebesgue and Sobolev distributions with real or vector values and for solving partial differential equations. Differential calculus is also extended to semi-normed spaces. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students - doctoral students, postgraduate students - engineers and researchers without restricting or generalizing the results. | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Banach spaces. | |
650 | 0 | |a Fréchet spaces. | |
650 | 0 | |a Hilbert space. | |
650 | 0 | |a Normed linear spaces. | |
650 | 0 | |a Von Neumann algebras. | |
650 | 0 | |a Differentiable mappings. | |
650 | 0 | |a Mappings (Mathematics) | |
650 | 0 | |a Topology. | |
650 | 6 | |a Espaces de Banach. | |
650 | 6 | |a Espaces de Fréchet. | |
650 | 6 | |a Espace de Hilbert. | |
650 | 6 | |a Espaces linéaires normés. | |
650 | 6 | |a Algèbres de Von Neumann. | |
650 | 6 | |a Applications différentiables. | |
650 | 6 | |a Applications (Mathématiques) | |
650 | 6 | |a Topologie. | |
650 | 7 | |a Von Neumann algebras |2 fast | |
650 | 7 | |a Topology |2 fast | |
650 | 7 | |a Normed linear spaces |2 fast | |
650 | 7 | |a Mappings (Mathematics) |2 fast | |
650 | 7 | |a Hilbert space |2 fast | |
650 | 7 | |a Fréchet spaces |2 fast | |
650 | 7 | |a Differentiable mappings |2 fast | |
650 | 7 | |a Banach spaces |2 fast | |
776 | 0 | 8 | |i Print version: |a Simon, Jacques C.H. (Jacques Charles Henri), 1945- |t Banach, Fréchet, Hilbert and Neumann spaces. |d London : John Wiley & Sons, Incorporated, ©2016 |z 9781786300096 |
830 | 0 | |a Analysis for PDEs set ; |v volume 1. | |
830 | 0 | |a Mathematics and statistics series (ISTE) | |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4875241 |z Texto completo |
938 | |a EBL - Ebook Library |b EBLB |n EBL4875241 | ||
938 | |a YBP Library Services |b YANK |n 14561004 | ||
994 | |a 92 |b IZTAP |