Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2005.
|
Colección: | Contemporary Mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Part I. Basic Material � Reviews
- Spectral Problems from Quantum Field Theory
- Euclidean Quantum Gravity in Light of Spectral Geometry
- Analysis of Invariants Associated with Spectral Boundary Problems for Elliptic Operators
- Part II. Spectral Invariants and Asymptotic Expansions
- A Resolvent Approach to Traces and Zeta Laurent Expansions
- Asymptotic Expansion of the Zeta�determinant of an Invertible Laplacian on a Stretched Manifold
- Agranovich�Dynin Formula for the Zeta�determinants of the Neumann and Dirichlet Problems
- Part III. Geometric and Topological ProblemsThe Calderón Projector for the Odd Signature Operator and Spectral Flow Calculations in 3�dimensional Topology
- Cut�and�paste on Foliated Bundles
- 1. Introduction
- 2. Spectral flow
- 3. Foliated bundles, index classes and the noncommutative spectral flow
- 4. Index classes on foliated bundles with boundary
- 5. Fundamental properties of b-index classes
- 6. On the cut-and-paste invariance of the signature index class
- 7. Geometric applications
- References
- The Uniqueness of the Spectral Flow on Spaces of Unbounded Self�adjoint Fredholm OperatorsVariants of Equivariant Seiberg�Witten Floer Homology
- Part IV. Manifolds with Singularities
- Dirac Operators, Boundary Value Problems, and the b�calculus
- Guillemin Transform and Toeplitz Representations for Operators Singular Manifolds
- Pseudodifferential Operators on Non�compact Manifolds and Analysis on Polyhedral Domains
- Introduction
- 1. Boundary value problems
- 2. Lie algebras of vector fields
- 3. Melrose's quantization problem
- 4. An application to Fredholm conditions5. Examples
- 6. Spectra
- References