Cargando…

Meta-heuristic and evolutionary algorithms for engineering optimization /

A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and ev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bozorg-Haddad, Omid, 1974- (Autor), Solgi, Mohammad, 1989- (Autor), Loaiciga, Hugo A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2017.
Colección:Wiley series in operations research and management science
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn988749666
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 170531t20172017njua ob 001 0 eng
010 |a  2017026412 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d N$T  |d YDX  |d IDEBK  |d EBLCP  |d DG1  |d YDX  |d MERER  |d UAB  |d OCLCQ  |d DEBSZ  |d CNCGM  |d OCLCO  |d UPM  |d OCLCQ  |d KSU  |d RECBK  |d TKN  |d U3W  |d OCLCQ  |d VT2  |d WYU  |d OCLCQ  |d UKMGB  |d OCLCQ  |d DLC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB7E5894  |2 bnb 
016 7 |a 018469725  |2 Uk 
019 |a 1048188793  |a 1148071442 
020 |a 9781119387053  |q (electronic book) 
020 |a 1119387051  |q (electronic book) 
020 |a 9781119387077  |q (electronic book) 
020 |a 1119387078  |q (electronic book) 
020 |a 9781119387060  |q (electronic book) 
020 |a 111938706X  |q (electronic book) 
020 |a 1119386993 
020 |a 9781119386995 
020 |z 9781119386995  |q (hardcover) 
029 1 |a AU@  |b 000060024514 
029 1 |a CHBIS  |b 011150780 
029 1 |a CHNEW  |b 000969182 
029 1 |a CHVBK  |b 499165942 
029 1 |a DEBSZ  |b 494213086 
029 1 |a GBVCP  |b 1014966280 
029 1 |a UKMGB  |b 018469725 
029 1 |a AU@  |b 000067092078 
035 |a (OCoLC)988749666  |z (OCoLC)1048188793  |z (OCoLC)1148071442 
037 |a 9781119387060  |b Wiley 
042 |a pcc 
050 1 4 |a QA402.5  |b .B695 2017 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 0 |a 620/.0042015196  |2 23 
049 |a UAMI 
100 1 |a Bozorg-Haddad, Omid,  |d 1974-  |e author. 
245 1 0 |a Meta-heuristic and evolutionary algorithms for engineering optimization /  |c Omid Bozorg-Haddad, Mohammad Solgi, Hugo A. Loáiciga. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (xxiii, 280 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Wiley series in operations research and management science 
504 |a Includes bibliographical references and index. 
505 0 |a Overview of optimization -- Introduction to meta-heuristic and evolutionary algorithms -- Pattern search (PS) -- Genetic algorithm (GA) -- Simulated annealing (SA) -- Tabu search (TS) -- Ant colony optimization (ACO) -- Particle swarm optimization (PSO) -- Differential evolution (DE) -- Harmony search (HS) -- Shuffled frog-leaping algorithm (SFLA) -- Honey-bee mating optimization (HBMO) -- Invasive weed optimization (IWO) -- Central force optimization (CFO) -- Biogeography-based optimization (BBO) -- Firefly algorithm (FA) -- Gravity search algorithm (GSA) -- Bat algorithm (BA) -- Plant propagation algorithm (PPA) -- Water cycle algorithm (WCA) -- Symbiotic organisms search (SOS) -- Comprehensive evolutionary algorithm (CEA). 
588 0 |a Online resource; title from digital title page (viewed on September 20, 2017). 
520 |a A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm- and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: -Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; -Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; -Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; -Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; -Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M. Sc., is Teacher Assistant for M. Sc. courses at the University of Tehran, Iran. HUGO A. LOAICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical optimization. 
650 0 |a Engineering design  |x Mathematics. 
650 6 |a Optimisation mathématique. 
650 6 |a Conception technique  |x Mathématiques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Engineering design  |x Mathematics  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
700 1 |a Solgi, Mohammad,  |d 1989-  |e author. 
700 1 |a Loaiciga, Hugo A.,  |e author. 
758 |i has work:  |a Meta-heuristic and evolutionary algorithms for engineering optimization (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG36vYMQvWwHdPpTFPPfMd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bozorg-Haddad, Omid, 1974-  |t Meta-heuristic and evolutionary algorithms for engineering optimization.  |d Hoboken, NJ : John Wiley & Sons, 2017  |z 9781119386995  |w (DLC) 2017017765 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5015534  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5015534 
938 |a EBSCOhost  |b EBSC  |n 1586122 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37940529 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00744686 
938 |a YBP Library Services  |b YANK  |n 14776695 
938 |a YBP Library Services  |b YANK  |n 14803451 
994 |a 92  |b IZTAP