Cargando…

Classifying the Absolute Toral Rank Two Case /

The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a fi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Strade, Helmut
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2017]
Edición:2nd ed.
Colección:De Gruyter expositions in mathematics ; 42.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn984687181
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 170419s2017 gw ob 000 0 eng d
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d GWDNB  |d OCLCQ  |d EBLCP  |d CUY  |d OCLCO  |d OCLCQ  |d NRC  |d MERUC  |d ZCU  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d TKN  |d DKC  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
016 7 |a 1130283410  |2 DE-101 
016 7 |a 1135318697  |2 DE-101 
019 |a 983742311  |a 992488705 
020 |a 9783110517606 
020 |a 3110517604 
020 |a 9783110516890 
020 |a 3110516896 
024 7 |a 10.1515/9783110517606  |2 doi 
024 3 |a 9783110517606 
024 7 |a urn:nbn:de:101:1-201704192994  |2 urn 
024 3 |a 9783110516890 
024 7 |a urn:nbn:de:101:1-201706141955  |2 urn 
029 1 |a GWDNB  |b 1130283410 
029 1 |a GWDNB  |b 1135318697 
035 |a (OCoLC)984687181  |z (OCoLC)983742311  |z (OCoLC)992488705 
050 4 |a QA252.3  |b .S773 2017 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a MAT014000  |2 bisacsh 
082 0 4 |8 1\p  |a 510  |q DE-101 
084 |a 510  |q DE-101  |2 sdnb 
049 |a UAMI 
100 1 |a Strade, Helmut. 
245 1 0 |a Classifying the Absolute Toral Rank Two Case /  |c Helmut Strade. 
250 |a 2nd ed. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (394 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a De Gruyter Expositions in Mathematics ;  |v 42 
505 0 0 |6 880-01  |t Frontmatter --  |t Contents --  |t Introduction --  |t Chapter 10. Tori in Hamiltonian and Melikian algebras --  |t Chapter 11. 1-sections --  |t Chapter 12. Sandwich elements and rigid tori --  |t Chapter 13. Towards graded algebras --  |t Chapter 14. The toral rank 2 case --  |t Notation --  |t Bibliography --  |t Index. 
520 |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case. 
546 |a In English. 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed Apr. 18, 2017). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Lie algebras. 
650 4 |a Lie algebras, fields of positive characteristic, classification. 
650 6 |a Algèbres de Lie. 
650 7 |a Lie algebras  |2 fast 
653 |a (Produktform)Electronic book text 
653 |a (Zielgruppe)Fachpublikum/ Wissenschaft 
653 |a (BISAC Subject Heading)MAT002010 
653 |a (BISAC Subject Heading)MAT014000: MAT014000 MATHEMATICS / Group Theory 
653 |a Lie algebras, fields of positive characteristic, classification 
653 |a (VLB-WN)9623 
758 |i has work:  |a Classifying the absolute toral rank two case (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFr6rQKpMTxwxxK6HXX7xP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c bundle  |z 9783110517613 
776 0 |c EPUB  |z 9783110516890 
776 0 |c print  |z 9783110516760 
830 0 |a De Gruyter expositions in mathematics ;  |v 42. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4843238  |z Texto completo 
880 0 |6 505-01/(S  |a Contents ; Introduction ; 10. Tori in Hamiltonian and Melikian algebras ; 10.1 Determining absolute toral ranks of Hamiltonian algebras ; 10.2 More on H(2; (1,2))(2)[p] ; 10.3 2-dimensional tori in H(2; 1; Φ(τ))(1); 10.4 Semisimple elements in H(2; 1; Φ(1))[p]; 10.5 Melikian algebras ; 10.6 Semisimple Lie algebras of absolute toral rank 1 and 2. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31955352 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35152145 
938 |a De Gruyter  |b DEGR  |n 9783110517606 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4843238 
994 |a 92  |b IZTAP