|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn984687181 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
170419s2017 gw ob 000 0 eng d |
040 |
|
|
|a DEGRU
|b eng
|e rda
|e pn
|c DEGRU
|d GWDNB
|d OCLCQ
|d EBLCP
|d CUY
|d OCLCO
|d OCLCQ
|d NRC
|d MERUC
|d ZCU
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d TKN
|d DKC
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
016 |
7 |
|
|a 1130283410
|2 DE-101
|
016 |
7 |
|
|a 1135318697
|2 DE-101
|
019 |
|
|
|a 983742311
|a 992488705
|
020 |
|
|
|a 9783110517606
|
020 |
|
|
|a 3110517604
|
020 |
|
|
|a 9783110516890
|
020 |
|
|
|a 3110516896
|
024 |
7 |
|
|a 10.1515/9783110517606
|2 doi
|
024 |
3 |
|
|a 9783110517606
|
024 |
7 |
|
|a urn:nbn:de:101:1-201704192994
|2 urn
|
024 |
3 |
|
|a 9783110516890
|
024 |
7 |
|
|a urn:nbn:de:101:1-201706141955
|2 urn
|
029 |
1 |
|
|a GWDNB
|b 1130283410
|
029 |
1 |
|
|a GWDNB
|b 1135318697
|
035 |
|
|
|a (OCoLC)984687181
|z (OCoLC)983742311
|z (OCoLC)992488705
|
050 |
|
4 |
|a QA252.3
|b .S773 2017
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
072 |
|
7 |
|a MAT014000
|2 bisacsh
|
082 |
0 |
4 |
|8 1\p
|a 510
|q DE-101
|
084 |
|
|
|a 510
|q DE-101
|2 sdnb
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Strade, Helmut.
|
245 |
1 |
0 |
|a Classifying the Absolute Toral Rank Two Case /
|c Helmut Strade.
|
250 |
|
|
|a 2nd ed.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b De Gruyter,
|c [2017]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (394 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a De Gruyter Expositions in Mathematics ;
|v 42
|
505 |
0 |
0 |
|6 880-01
|t Frontmatter --
|t Contents --
|t Introduction --
|t Chapter 10. Tori in Hamiltonian and Melikian algebras --
|t Chapter 11. 1-sections --
|t Chapter 12. Sandwich elements and rigid tori --
|t Chapter 13. Towards graded algebras --
|t Chapter 14. The toral rank 2 case --
|t Notation --
|t Bibliography --
|t Index.
|
520 |
|
|
|a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras 1-sections Sandwich elements and rigid tori Towards graded algebras The toral rank 2 case.
|
546 |
|
|
|a In English.
|
588 |
0 |
|
|a Online resource; title from PDF title page (publisher's Web site, viewed Apr. 18, 2017).
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Lie algebras.
|
650 |
|
4 |
|a Lie algebras, fields of positive characteristic, classification.
|
650 |
|
6 |
|a Algèbres de Lie.
|
650 |
|
7 |
|a Lie algebras
|2 fast
|
653 |
|
|
|a (Produktform)Electronic book text
|
653 |
|
|
|a (Zielgruppe)Fachpublikum/ Wissenschaft
|
653 |
|
|
|a (BISAC Subject Heading)MAT002010
|
653 |
|
|
|a (BISAC Subject Heading)MAT014000: MAT014000 MATHEMATICS / Group Theory
|
653 |
|
|
|a Lie algebras, fields of positive characteristic, classification
|
653 |
|
|
|a (VLB-WN)9623
|
758 |
|
|
|i has work:
|a Classifying the absolute toral rank two case (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFr6rQKpMTxwxxK6HXX7xP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
|
|c bundle
|z 9783110517613
|
776 |
0 |
|
|c EPUB
|z 9783110516890
|
776 |
0 |
|
|c print
|z 9783110516760
|
830 |
|
0 |
|a De Gruyter expositions in mathematics ;
|v 42.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4843238
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Contents ; Introduction ; 10. Tori in Hamiltonian and Melikian algebras ; 10.1 Determining absolute toral ranks of Hamiltonian algebras ; 10.2 More on H(2; (1,2))(2)[p] ; 10.3 2-dimensional tori in H(2; 1; Φ(τ))(1); 10.4 Semisimple elements in H(2; 1; Φ(1))[p]; 10.5 Melikian algebras ; 10.6 Semisimple Lie algebras of absolute toral rank 1 and 2.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31955352
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35152145
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110517606
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4843238
|
994 |
|
|
|a 92
|b IZTAP
|