Cargando…

Interval Analysis : and Automatic Result Verification /

This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through man...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mayer, G. (Günter) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2017]
Colección:De Gruyter studies in mathematics ; 65.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Frontmatter
  • Preface
  • Contents
  • 1. Preliminaries
  • 2. Real intervals
  • 3. Interval vectors, interval matrices
  • 4. Expressions, P-contraction, [epsilon]-inflation
  • 5. Linear systems of equations
  • 6. Nonlinear systems of equations
  • 7. Eigenvalue problems and related ones
  • 8. Automatic differentiation
  • 9. Complex intervals
  • Final Remarks
  • Appendix
  • A. Proof of the Jordan normal form
  • B. Two elementary proofs of Brouwer's fixed point theorem
  • C. Proof of the Newton-Kantorovich Theorem
  • D. Convergence proof of the row cyclic Jacobi method
  • E. The CORDIC algorithm
  • F. The symmetric solution set
  • a proof of Theorem 5.2.6
  • G.A short introduction to INTLAB
  • Bibliography
  • Symbol Index
  • Author Index
  • Subject Index.
  • Preface ; Contents ; 1 Preliminaries ; 1.1 Notations and basic definitions ; 1.2 Metric spaces ; 1.3 Normed linear spaces ; 1.4 Polynomials ; 1.5 Zeros and fixed points of functions ; 1.6 Mean value theorems ; 1.7 Normal forms of matrices ; 1.8 Eigenvalues.
  • 5.4 Direct methods 5.5 Iterative methods ; 6 Nonlinear systems of equations ; 6.1 Newton method
  • one-dimensional case ; 6.2 Newton method
  • multidimensional case ; 6.3 Krawczyk method ; 6.4 Hansen-Sengupta method ; 6.5 Further existence tests ; 6.6 Bisection method.
  • 7 Eigenvalue problems 7.1 Quadratic systems ; 7.2 A Krawczyk-like method ; 7.3 Lohner method ; 7.4 Double or nearly double eigenvalues ; 7.5 The generalized eigenvalue problem ; 7.6 A method due to Behnke ; 7.7 Verification of singular values ; 7.8 An inverse eigenvalue problem.